個別指導塾、学習塾のヒーローズ。植田(名古屋市天白区)、赤池(日進市)の口コミで評判!成績が上がる勉強方法が身につく!振替、自習も便利!
// 条件1に該当しない場合の処理

解説

愛知県公立高校入試 2021B 数学を全部解説してみたⅡ

愛知県公立高校入試2021年度B数学全解説

塾長です。

昨日は公立高校入試B日程の学科試験でした。今日の面接試験で愛知県の高校入試がひと段落します。

さて前回に引き続き、B日程の数学についても解説をつくりました。

中学2年生までの知識でも半分くらいは解ける問題です。あとの半分は中学3年生になってからチャレンジしてみましょう。

さっそく植田中学では、2年生にA日程の問題を解かせて授業中に解説してくれたみたいです。流石です。
学校の授業中で消化しきれなかった入試問題について、生徒たちから質問が来るようになりました。このブログが家庭学習にも役立てば幸いです。

そのため、できるだけ発想や考え方の過程についても書いておきました。

 

【1】次の(1)から(10)までの問に答えなさい。

(1)【中1】 37×(58)  を計算しなさい。

37×(58)
=37×(3)
=3+21=24

 

(2)【中2】 27x2y÷(9xy)×(3x)  を計算しなさい。

27x2y÷(9xy)×(3x)
=27x2y×(3x)9xy
=27×3×x3y9xy
=9x2

 

(3)【中3】 4836÷2  を計算しなさい。

4836÷2
=42×3362
=4333
=3

 

(4)【中3】 (x+1)(x8)+5x  を因数分解しなさい。

(x+1)(x8)+5x
=x2+(18)x8+5x
=x27x+5x8
=x22x8
=(x4)(x+2)

 

(5)【中3】 方程式 (x+2)2=7  を解きなさい。

(x+2)2=7
x+2=±7
x=2±7

 

(6)【中1】  a 個のあめを10人に b 個ずつ配ったところ、 c 個余った。

この数量の関係を等式に表しなさい。

a=10b+c
(10b+c=a)
(b=ac10)
(ac10=b)
(c=a10b)
(a10b=c)
(10b=ac)
(ac=10b)

※「a  b, c で表せ」などの指定がないため、上記のどれでも正解

 

(7)【中1】 男子生徒8人の反復横跳びの記録は、次のようであった。

53 45 51 57 49 42 50 45 ()

この記録の代表値について正しく述べたものを、次のアからエまでの中からすべて選んで、そのかな符号を書きなさい。

ア 平均値は、49回である。
イ 中央値は、50回である。
ウ 最頻値は、57回である。
エ 範囲は、15回である。

ア 平均値は、(53+45+51+57+49+42+50+45)8=3928=49 回だから〇
イ 中央値は、資料を並び替えれば 42 45 45 49 50 51 53 57 であるから 49+502=49.5 回となって×
ウ 最頻値は、 45 回だから×
エ 範囲は、最大値-最小値=5742=15 回であるから〇

以上から
ア、エ

 

(8)【中2】 大小2つのさいころを同時に投げる時、大きいさいころの目の数が小さいさいころの目の数の2倍以上となる確率を求めなさい。

全ての出目の組み合わせについて表で確認すれば、下図のようになる。

愛知県公立高校2021年3月B日程数学_問1(8)_表

よって、936=14

 

(9)【中3】 関数 y=ax2 a  y=6x+5 について、 x の値が1から4まで増加するときの変化の割合が同じであるとき、 a の値を求めなさい。

<解法1>
定義通りに式を立てる。
関数 y=ax2 の変化の割合は y x  であり、 y=6x+5 のそれは傾き 6 のことであるから、
a×42a×1241=6
16aa3=6
15a3=6
5a=6
a=56

<解法2>
関数 y=ax2 の変化の割合は、公式を使えば (1+4)a=5a であるから、
5a=6
a=56

 

(10)【中3】 図で、DはABC の辺AB上の点で、∠DBC=∠ACDである。

AB=6cm 、AC=5cm のとき、線分ADの長さは何cm か、求めなさい。

愛知県公立高校2021年3月B日程数学_問1(10)

題意から分かることを図に書き込む。

愛知県公立高校2021年3月B日程数学_問1(10)-2

すると、ABC ACD が相似であると分かる。
なぜなら、共通の角だから∠BAC=∠CADとなり、題意の∠DBC=∠ACDと合わせて「2角が等しい」からである。
ACD の三角形の向きを左右ひっくり返して向きをそろえて重ねると、もっと分かりやすい。

愛知県公立高校2021年3月B日程数学_問1(10)-3

よって、求める線分ADを x とすれば、
6:5=5:x
6x=25
x=256 cm

 

【2】次の(1)から(3)までの問に答えなさい。

(1)【中2】 図で、Oは原点、A、Bは関数 y=5x のグラフ上の点で、点A、Bの x 座標はそれぞれ1、3であり、C、Dは x 軸上の点で、直線AC、BDはいずれも y 軸と平行である。また、Eは線分ACとBOとの交点である。

四角形ECDBの面積はAOBの面積の何倍か、求めなさい。

愛知県公立高校2021年3月B日程数学_問2(1)

題意から分かる値を図に書き込む。

愛知県公立高校2021年3月B日程数学_問2(1)-2

AとBの座標は、 y=5x x=1, 3 をそれぞれ代入して求められる。
またEの座標は、直線OBの変化の割合を計算すれば求められる。それは
 53÷3
=53×13
=5×13×3
=59
よって直線OBの式は
y=59x
とわかる。これに x=1 を代入すればよい。

(※)「変化の割合」とは「 x が1増加した時の y の増加量」だから、計算しなくても 59 がそのままEの高さになると分かる。
(※)OBDとAECの相似比から BD×13 と計算してもよい。

図から、BD=53、ECD=59、CD=2であるから、四角形ECDBの面積は、台形の面積の公式より
(53+59)×2×12
=159+59
=209

AOB=四角形CDBA+OCA-ODB
=(53+5)×2×12+5×1×123×53×12
=53+153+5252
=106+306+156156
=406
=203

以上から

209÷203
=209×320
=13 

―――【割合の復習】―――
「〇は△の◇倍」⇔「〇÷△=◇」
だったから、
「四角形ECDBの面積はAOBの面積の何倍か」

[四角形ECDBの面積]÷[AOBの面積]
である。

 

(2)【中1】 次の文章は、連続する2つの自然数の間にある、分母が5で分子が自然数である分数の和について述べたものである。

文章中の【Ⅰ】、【Ⅱ】、【Ⅲ】にあてはまる数をそれぞれ書きなさい。また、【Ⅳ】にあてはまる式を書きなさい。

愛知県公立高校2021年3月B日程数学_問2(2)

まず問題文の意味を理解していこう。

「連続する2つの自然数の間にある、分母が5で分子が自然数である分数の和」

さらりと読んだだけでは何を言っているのか分からない。数学には数学専用の読解力が必要で、特にこういう問題はその訓練量が試される。こういうときは手を動かして、具体的な例で考えてみるに限る。
そして問題文の□囲みの中に、その様子が書かれているので、言われた通りに順を追って考えていこう。

まず「からまでの間」で考えてみる。しかも「分母が5」であることに注意する。
まず1を分数にすると 55 で、2を分数にすると 2×55 である。
よって「1と2の間で分母が5の分数の和」は、
 55+65+75+85+95+105 
である。
いや、ちがう。
」だから両端を含んではいけない
だから、
 65+75+85+95 
となっている。
ここで分母がすべて5なのだから、分母は1つにまとめられる。要するに
 6+7+8+95 
とすれば分子だけ考えれば良くなる。この時点で分子の数の並びが、
×5と×5の間(ただし1×5と2×5自身は含まない!)」
となっていることに気付けば、あとは楽になる。
ここまでが第1関門。

次に問題の「からまでの間」。上と同様に考えれば、分子の並びは
×5と×5の間(ただし2×5と3×5自身は含まない!)」つまり
「10と15の間(ただし10と15自身は含まない!)」
となるから、
11+12+13+145
=505
=10 【Ⅰ】

ちなみに分子の計算を
11+12+13+14
=10+10+10+10+1+2+3+4
=104+(1+4)+(2+3)
=40+10
=50
などと工夫できたら暗算が楽になる。

同様に「からまでの間」では分子が「16から19」だから
16+17+18+195
10×4+(6+9)+(7+8)5
=40+15+155
=705
=14 【Ⅱ】

からまでの間」では分子が「21から24」だから
21+22+23+245
20×4+(1+4)+(2+3)5
=80+5+55
=905
=18 【Ⅲ】

ここで分子の項は4つだけであることに注意しよう。よって、

 n, (n+1) の間」のときは
n×5+1 + n×5+2 + n×5+3 + n×5+4 5
=n×5×4+(1+4)+(2+3)5
=20n+5+55
=20n+105
=5(4n+2)5
=4n+2 【Ⅳ】

 

(3)【中2】 Aさんが使っているスマートフォンは、電池残量が百分率で表示され、0%になると使用できない。このスマートフォンは、充電をしながら動画を視聴するとき、電池残量は4分あたり1%増加し、充電せずに動画を視聴するとき、電池残量は一定の割合で減少する。

Aさんは、スマートフォンで1本50分の数学講座の動画を2本視聴することにした。

Aさんは、スマートフォンの充電をしながら1本目の動画を視聴しはじめ、動画の視聴をはじめてから20分後に充電をやめ、続けて充電せずに動画を視聴したところ、1本目の動画の最後まで視聴できた。

スマートフォンの電池残量が、Aさんが1本目の動画の視聴をはじめたときは25%、1本目の動画の最後まで視聴したときはちょうど0%であったとき、次の①、②の問に答えなさい。

 

①【中2】 Aさんが1本目の動画を視聴しはじめてから x 分後の電池残量を y %とする。Aさんが1本目の動画の視聴をはじめてから1本目の動画の最後まで視聴するまでの、 x  y の関係をグラフに表しなさい。

愛知県公立高校2021年3月B日程数学_問2(3)

これまた情報量が多いので、必要な情報を探しながらグラフに描いていく。

ちなみに、グラフは x 軸に沿って左から右へ描いていくのが基本である(関数は x を決めたら y が1つ定まる、という定義であり、その関数の様子を図示したのがグラフだから)。 x 軸は経過時間(分)を表しているから、まず0分の時点から考えよう。

文脈から0分時点の電池残量は25%だったとあるので(0,25)に印をつけよう。

次に傾き(変化の割合)を知る必要がある。そうしなければ、右のどこの点を打てるのかが決まらない。

文脈から0~20分は充電しながら視聴していたので、電池が増減する変化の割合は、「電池残量は4分あたり1%増加」があてはまる。
「4分で+1%」ということは「20分で+5%」であるから、電池残量は20分目では30%になっているはずである。よって(20,30)に印をつけよう。

そして「1本目の動画の最後まで視聴したときはちょうど0%」とある。動画の長さは50分だったらか(50,0)に印をつけよう。

愛知県公立高校2021年3月B日程数学_問2(3)-2

これらを線で結べばよい。

愛知県公立高校2021年3月B日程数学_問2(3)-3

 

②【中2】 Aさんが1本目の動画の最後まで視聴したのち、2本目の動画の最後まで視聴するためには、2本目の動画はスマートフォンの充電をしながら何分以上視聴すればよいか、求めなさい。

これは逆算で考えていく。
つまり2本目の動画を見終わったときに電池残量が0%になるのが最低条件であるから、そこから逆算する。

上の問から、充電せずに動画を視聴した場合の変化の仕方は、グラフの20~50分の部分であった。2本目の動画も50分間だから、この部分はこのまま使える。

愛知県公立高校2021年3月B日程数学_問2(3)-4

そして2本目の動画を見はじめた時は電池残量が0%である。つまり0分目は0%から出発する。つまり原点から出発する。
充電しながら見るのだから、変化の割合は「電池残量は4分あたり1%増加」。これは「20分で+5%」だったから、20分ごとに5%ずつ上昇するグラフになる。

愛知県公立高校2021年3月B日程数学_問2(3)-5

よって、赤いグラフと青いグラフの交点のときが求める時間である。計算せずともグラフから読み取れば40分である。よって

40分以上

 

【3】次の(1)から(3)までの問に答えなさい。

ただし、答えは根号をつけたままでよい。

(1)【中3】 図で、C、DはABを直径とする円Oの周上の点、Eは直線ABと点Cにおける円Oの接線との交点である。

∠CEB=42 のとき、∠CDAの大きさは何度か、求めなさい。

愛知県公立高校2021年3月B日程数学_問3(1)

―――<解法1>―――

※ この解法1は「個別学習のセルモ 日進西小学校前教室」の西尾先生からご提供ただきました。ぜひ西尾先生のブログもご参照くださいませ。

接線が引かれているので、円の接線の性質「中心から接点に引いた半径は、接線と垂直」を使えないだろうかと考えて補助線を引いてみる。

愛知県公立高校2021年3月B日程数学_問3(1)-4

外角の公式より、∠AOC=∠OCE+∠CEO=90+42=132
円周角の定理「中心角は円周角の2倍」より、
∠CDA=∠AOC÷2=132÷2=66

 

―――<解法2>―――

求める∠CDAは円周角であるから、円周角の定理を使うことを考える。そこでDを円周上のどこかに移動すると解けるかもしれないと考えて補助線を引いてみる。

愛知県公立高校2021年3月B日程数学_問3(1)-2

またCが接点であるから、円の接線の性質「中心から接点に引いた半径は、接線と垂直」を使えないだろうかと考えて補助線を引いてみる。
すると、OBとOCはともに半径だから二等辺三角形ができる。「二等辺三角形は底角が等しい」が使えそうである。

愛知県公立高校2021年3月B日程数学_問3(1)-3

OECについて、
∠COE=1804290=48 だから、
∠OBC=(18048)÷2=66

∠CDA=∠OBC=66

 

―――<解法3>―――

※ この解法3および下の図は、大阪の「あおい塾」の神田先生からご提供いただきました。大阪方面の方は神田先生のブログもぜひチェックしてみてください。

∠ADCが円周角であるから、Dを円周上で動かして利用しやすくなるように考える。角度がわっている∠BECに近づけたら何かあるだろうと考えて、DをBまで動かしてみよう。
そう考えて補助線BCをひく。
次に「接弦定理」を思い出して、これを利用してみようと思いつく。そう考えて補助線ACをひく。

愛知県公立高校2021年3月B日程数学_問3(1)-5

円周角の定理から∠ADC=∠ABC、かつ、∠ACB=90
接弦定理より∠ACF=∠ABC

まず接線上の角度の合計は180だから、
[緑の〇]+90+[赤の〇]=180
整理して
[緑の〇]+[赤の〇]=90 …①
∠ABCがBECの外角だらか、外角の公式を使って
[緑の〇]+42=[赤の〇] …②

①と②を連立方程式のように解けばよい。[赤の〇]を出すのが目的だから①-②で[緑の〇]を消すのが良い。
式①-式②より
[赤の〇]-4290-[赤の〇]
2×[赤の〇]=90+42132
[赤の〇]=66

 

(2)【中3】 図で、四角形ABCDは正方形であり、Eは辺DCの中点、Fは線分AEの中点、Gは線分FBの中点である。

AB=8 cm のとき、次の①、②の問に答えなさい。

愛知県公立高校2021年3月B日程数学_問3(2)

 

①【中3】 線分GCの長さは何 cm か、求めなさい。

―――<解法1>―――

やたらと中点が多いので「中点連結定理」を使えないだろうかと考える。
中点連結定理に必要なのは、

①三角形
②1辺に中点
③中点から伸びる底辺に平行な線

の3つである。
これらの条件をGCの周りでそろえていけば解けそうである。

まず②としてFBの中点Gがある。すると③はGCとなりそうだ。ならばFEが底辺になりそうだが、①の形が未完成。
そこで次のように補助線を引く。

愛知県公立高校2021年3月B日程数学_問3(2)-5

AEをEの方へ延長し、またBCをCの方へ延長し、その交点をHとした。
するとパッと見はBFHで中点連結定理のような図形になった。本当にそうか確かめよう。

まず、ADE≡HCE
となるから、AD=CH=BCとなる。つまりCはBHの中点と分かる。
よって中点連結定理より、GC // FHであり、同時に
GC=12FH
である。
確かに中点連結定理の形になっている。

だから、あとはFHを求めればよい。

ここで分かっている長さを確認すると、

愛知県公立高校2021年3月B日程数学_問3(2)-6

ADEについて、三平方の定理を使って、
AE=82+42=64+16=16(4+1)=45
よって
HE=45
FはAEの中点だから
AF=FE=12×45=25
よって
FH=FE+HE=25+45=65

以上から

GC=12FH=12×65=35 cm

 

―――<解法2>―――

まず題意から分かる情報を書き込む。

愛知県公立高校2021年3月B日程数学_問3(2)-2

斜めの線の長さと言えば三平方の定理であるが、求める線分GCを含むGBCは直角三角形かどうかわからない。
そこで補助線を引いて直角三角形をつくり出そうと考える。
また、この問題では「中点」がやたらと多いので「中点連結定理」が使えないかとも考える。
このような思案を経て次のような補助線を引く。

愛知県公立高校2021年3月B日程数学_問3(2)-3

AEDに中点連結定理を用いれば、FH=AD×12=4であり、EH=HD=2である。
よってCH=8-2=6だから、CI=IH=3となる。

CGを求めるために線分GIの長さが必要になる。それを知るために、さらに補助線を引く。

愛知県公立高校2021年3月B日程数学_問3(2)-4

AEDに中点連結定理を用いれば、AJ=JD=4
よってBK=AJ=4
今度はFBKに中点連結定理を用いれば、
GL=BK×12=2
FH=LI=4だから
GI=2+4=6

以上からGCIに三平方の定理を用いて、
GC=62+32
=45
=35

 

―――<解法3>―――

※ この解法3は「個別学習のセルモ 日進西小学校前教室」の西尾先生からご提供ただきました。ぜひ西尾先生のブログもご参照くださいませ。
※ この解法がおそらく最短かつエレガントかもしれません。ただし厳密な証明には高校数学の「ベクトル」の知識が必要です。

辺ABの中点をHとし、線分HGを書き込みます。

愛知県公立高校2021年3月B日程数学_問3(2)-8

AH//EC、かつ、AH=EC、だから四角形AHCEは平行四辺形
よって
AE=HC

もしもHGとGCが一直線上にあれば、
GC=HC-HG
で求まる。

まず中点連結定理より
HG//AF
HG=12AF …①
よって
HG//AE//HC
だからHGとGCは同一直線上にある(※)

三平方の定理より
AE=82+42=45
AEの中点がFだから
AF=12AE=12×45=25
①より
HG=12AF=12×25=5
よって
GC=HC-HG=AE-HG
=455=35

(※)注意事項!

HGとGCが同じ直線上?

HG//AE//HC から HGとHCが同一直線上にあることが言えますが、厳密には、まだHGとGCが同じ直線上であるとは言えません。
しかし作図をすれば、どうやってもHGとGCが同じ直線上になるようにしか描けません。
ですから「AGCは一直線だ!」と分かったのが直感的だったとしても、解ければよいと思います。
式を使って厳密な証明をするには、高校2年生の「ベクトル」の知識が必要です。

 

②【中3】 四角形FGCEの面積は何 cm2 か、求めなさい。

―――<① を解法1 で解いた場合>―――

四角形FGCEの面積=FBH-GBC-ECH
で求めることにする。
FBHの面積を求めるためには、その高さを求めたい。そこで次のように補助線を引く。

愛知県公立高校2021年3月B日程数学_問3(2)-7

ABH∽FIH
である。また
BI=8÷2=4 
IH=BHBI=164=12
であるから、相似比は
16:12=4:3
である。よって、
FI=AB×34=8×34=6

以上から
FBH=12×BH×FI=12×16×6=48

BCGとBHFの相似比は 1:2 だから面積比は 1:4 
よって
BCG=14×FBH=14×48=12
また
ECH=12×8×4=16

以上から

四角形FGCEの面積=FBH-GBC-ECH
=481216=20 cm2

 

―――<① を解法2 で解いた場合>―――

四角形FGCEの面積=FGL+台形FLIE+GCI
EI=HIHE=32=1
だから、
=12×2×3+12×(1+3)×4+12×6×3
=3+8+9
=20 cm2 

 

(3)【中1&中3】 図で、立体OABCはABCを底面とする正三角すいであり、Dは辺OA上の点で、DBCは正三角形である。

OA=OB=OC=6 cm 、AB=4 cm のとき、次の①、②の問に答えなさい。

愛知県公立高校2021年3月B日程数学_問3(3)

 

①【中3】 線分ADの長さは何 cm か、求めなさい。

※ この解法は「個別学習のセルモ 日進西小学校前教室」の西尾先生からご提供ただきました。ぜひ西尾先生のブログもご参照くださいませ。

線分ADを含むOABについて考える。問題文で与えられた長さも書き込むと下図のようになる。

愛知県公立高校2021年3月B日程数学_問3(3)-3
DBCは正三角形だから、AB=DB=4cm

するとOABとBADが相似なのではないかと思えてくるので確かめる。

OABとBADについて、
OABは二等辺三角形であるから∠OAB=∠OBA
BADも二等辺三角形であるから∠BAD=∠BDA
また共通の角であるから∠OAB=∠BAD
よって2角がそれぞれ等しいので
OAB∽BAD

以上から、

OA:AB=BA:AD
6:4=4:x
6x=16
x=166
=83 cm

 

②【中3】 立体ODBCの体積は正三角すいOABCの体積の何倍か、求めなさい。

全問いから、
OA:DA=6:83=18:8=9:4
よって
三角すいOABCと三角すいDABCの高さの比も 9:4 
両者は底面積が共通なので、体積の比も 9:4 

立体ODBCの体積=三角すいOABC-三角すいDABCだから、
三角すいOABCと立体DABCの体積の比は、 9:(94)=9:5 

以上から、立体DABCの体積は正三角すいOABCの
5÷9=59 

 

謝辞

解法と解説の作成にあたりましては、

にご協力いただきました。
おかげさまで図形問題の解説にあたっては、よりエレガントな解き方を用意することができました。
この場を借りて、あらためて御礼申し上げます。

あとがき

A日程にくらべると、大問3の図形問題が難化した印象です。

大問2は数学というよりも読解問題の様相が強いです。どの教科も全体的に論理国語の1点に集約していくような方向性は、あまり好ましくありません。
文字列だけで問題文を長くして難易度を上げようとする姿勢は、今後コンピューターを活用していく時代には向けては、あまり相応しいとは言えません。

より多様な情報提示のあり方で問題を作っていくべきというのが、今後の課題と言ったところでしょう。
もしも問題を作成する人たちが、コンピューターで読み書きできる情報が文字列しかない、というのであれば、それは能力上の問題です。
なぜ、こんなにもダラダラと長い問題文になってしまったのか、大いに反省すべきでしょう。

日本から国際競争力のある人材をどんどん輩出するのなら、早くこのボトルネックを解消すべきです。

 


進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたりますが、当塾の理念に反するので生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校

私立高校

中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

愛知県公立高校入試 2021A 数学を全部解説してみた

愛知県公立高校入試2021年度A数完全解説

塾長です。

愛知県の公立高校受験。A日程が面接まで終わりました。そして明日からB日程。本日が学科試験に向けた最後の対策です。

中学2年生のキミたち。もう受験が始まっています。ぜひ今のうちに入試問題を見ておいて欲しいと思います。
中2までに習った範囲で、もう半分近く解けるはずなんだよ!

そこで、A日程の数学について、フル解説を作りました。考え方や発想法、何年生で解けるようになるかなど、できるだけ詳しく書きました。
ちょっとチャレンジしてみてね。

【1】次の(1)~(10)までの問に答えなさい。

(1)【中1】 5(6)÷2  を計算しなさい。

5(6)÷2=5(3)=5+(+3)=8

(2)【中2】 3x24x36 を計算しなさい。

3x24x36
=(3x2)×312(x3)×212
=9x62x+612
=7x12
(=712x)

(3)【中3】 3228 を計算しなさい。

3228
=3×22×2222
=32222×2
=32222
=3222
=222
=2

(4)【中3】 (2x+1)2(2x1)(2x+3) を計算しなさい。

(2x+1)2(2x1)(2x+3)
{(2x)2+2×(2x)×1+12}{(2x)2+(1+3)×(2x)+(1)×(+3)}
={4x2+4x+1}{4x2+4x3}
=4x2+4x+14x24x+3
=4

(5)【中3】 連続する3つの自然数を、それぞれ2乗して足すと365 であった。もとの3つの自然数のうち、もっとも小さい数を求めさい。

<解法1>

計算を楽にするため3つの自然数の真ん中をnとおく。
すると3つの自然数は(n1), n, (n+1)とおける。
題意より方程式を立てて解けば、
(n1)2+n2+(n+1)2=365, (n>0)
n22n+1+n2+n2+2n+1=365, (n>0)
3n2+2=365, (n>0)
3n2=363, (n>0)
n2=121, (n>0)
n=11
よって、もっとも小さい数は(n1)に代入して
n1=111
n=10
である。

<解法2>

素直に、問われている「もっとも小さい数」をnとおいた場合は次のようになる。
n2+(n+1)2+(n+2)2=365, (n>0)
n2+n2+2n+1+n2+4n+4=365, (n>0)
3n2+6n+5=365, (n>0)
3n2+6n+5365=0, (n>0)
3n2+6n360=0, (n>0)
n2+2n120=0, (n>0)
(n+12)(n10)=0, (n>0)
n=10
今回はこちらでも計算は難しくなかった。

(6)【中1】 次のア~エの中からyx の一次関数であるものをすべて選んで、そのかな符号を書きなさい。

ア 1辺の長さがx cmである立方体の体積y cm3
イ 面積が50 cm2である長方形のたての長さx cmと横の長さy cm
ウ 半径がx cmである円の週の長さy cm
エ 5 %の食塩水x gに含まれる食塩の量y g

それぞれyxの式で表すと
ア y=x3
イ xy=50 より y=50x(反比例)
ウ y=2πx(比例)
エ y=5100x(比例)
である。
よって、一次関数の式 y=ax+b または y=ax (b=0 ) に当てはまるものは、
ウとエ
である。

(7)【中2】 5本のうち、あたりが2本はいっているくじがある。このくじをAさんが1本ひき、くじをもどさずにBさんが1本くじをひくとき、少なくとも1人はあたりをひく確率を求めなさい。

キーワード「少なくとも~」が出てきたら[1―逆の確率]が使えることが多いのだった。
そこで、
[少なくとも1人はあたりをひく]
の逆は
[1人もあたらない]=[2人とも外れる]
であることを考えて、

[少なくとも1人はあたりを引く確率] = 1―[2人とも外れる確率]

を求めればよい。

そこで、まず
[2人とも外れる確率]
から求める。これは、
[1人目が5本のうちのハズレ3本のどれかをひき]なおかつ[2人目が残り4本のうちのハズレ2本のどちらかをひく]とき
の確率である。1人目がハズレを1本引いているので、2人目に残されたハズレは3-1=2本で、総数も5-1=4本になるからである(※)。
これを計算すると、
35×24=3×25×4=3×15×2=310

よって求める確率は、
1310
=10310
=710

(※)もちろん樹形図を描けば明白です。

愛知県公立高校2021年3月A日程数学_問1(3)の樹形図

全部で20通りのうち、[2人とも外れる確率]は6通りだから、
[2人とも外れる確率]=620=310

(8)【中1】 yxに反比例し、x=45のときy=15である関数のグラフ上の点で、 x座標とy座標がともに正の整数となる点は何個あるか、求めなさい。

反比例  y=ax の式より xy=a  だから a=45×15=4×3=12 
よって、
 xy=12 
を満たす正の整数xyの組(x,y)が何個あるかを考えれば良い。
12の約数で考えれば、x=1,2,3,4,6,12  と順番に考えれば、
(x,y)=(1,12), (2,6), (3,4), (4,3), (6,2), (12,1)
であるから6個。

(9)【中2】 2直線 y=3x5, y=2x+5  の交点の座標を求めなさい。

2つの式を連立方程式で解く。代入法により、
3x5=2x+5
3x=2x+5+5
3x+2x=10
5x=10
x=2
これを y=3x5 に代入して( y=2x+5  に代入しても、どちらでも良い)
y=3×25=1
よって答えは
(2, 1)

(10)【中3】 図で、A,B,Cは円Oの周上の点である。円Oの半径が6 cm、∠BAC=30 のとき、線分BCの長さは何cmか、求めなさい。

愛知県公立高校2021年3月A日程数学_問1(10)

<解法1>

「Aが円周上」→「円周角の定理を使う」と着想する。
さらに、
「半径が6cm」→「半径6cmまたは直径12cmを使ってBCを求める」と着想する。
さらにここから「直径に対する円周角は90  」という性質も連想する。
以上の発想から次のように⊿A’BCを作図する。

愛知県公立高校2021年3月A日程数学_問1(10)_補助線

円周角の定理より、∠BAC=∠BA’C=30  かつ ∠BCA’=90  である。
よって三平方の定理からBC:AB=1:2とわかる。
これは三角定規でお馴染みの306090 の直角三角形だから、辺の比は既知である。
よって、
1:2=BC:12
2×BC=1×12
BC=6
より
BC=6cm

 

<解法2>

「Aが円周上」→「円周角の定理を使う」→「中心角」を連想する。
そこでOからB、Cに半径を引く。

愛知県公立高校2021年3月A日程数学_問1(10)_補助線2

円周角の定理「中心角=円周角×2」から、
∠BOC=30×2=60 
さらにOB=OCから二等辺三角形の性質「底角が等しい」をつかって、
∠OBC=∠OCB={18060}÷2=60 
よってOBC は正三角形となるので、
OB=OC=BC
つまり、
BC=6cm

 

【2】次の(1)~(3)までの問に答えなさい。

(1)【中3】 図で、Oは減点、A,Bは関数 y=14x2  のグラフ上の点で、点Aのx座標を正、y座標は9、点Bのx座標は―4である。また、Cは軸上の点で、直線CAはx軸とへいこうである。
点Cを通り、四角形CBOAの面積を二等分する直線の式を求めなさい。

愛知県公立高校2021年3月A日程数学_問2(1)

まず題意より各点の座標を求めて書き込むと次のようになる。

愛知県公立高校2021年3月A日程数学_問2(1)_座標

ここで題意の「点Cを通り、四角形CBOAの面積を二等分する直線」が辺OBを通るのか、辺OAを通るのかを知る必要がある。
そこで⊿OCBと⊿OACの面積を求めて比較すれば、大きい面積の方を通ると分かる。どちらもOCを底辺と考えれば、
OCB=12×9×4=18
OAC=12×9×6=27
よって、求める直線は⊿OACを通るため、辺OAと交わる。
その交点をEとし、そのx座標をtとしておく。

直線OAの式は、原点を通り、傾き=96=32である比例の式だから、
OA: y=32x である。
よって交点Eの座標は (t,32t) である。

これを図示すれば、次のようになる。

愛知県公立高校2021年3月A日程数学_問2(1)_座標2

直線CEは四角形CBOAの面積を二等分するから、次の等式となる。
OCB+OCE=OABOCE
ここで
OCE=12×9×t=9t2
だから、
18+9t2=279t2
これを解いて、
9t2+9t2=2718
9t=9
t=1
よって点Eは、 (t,32t)=(1,32) である。

最後に、直線CEの式  y=ax+b  a, b を求める。

切片 b は9である。

C(0,9)E(1,32)での変化の割合 a は、教科書にある定義どおりに式を立てると、
a={329}{10}
という複雑な式になるが、分母は1なので分子だけ計算すればよい。
a=329
=32182
=152

以上から、
y=152x+9

 

―――【参考】―――
もしも
=abcd
となってしまったら?

分数の中に分数が出てきたら困ってしまいますね。そういうときは
AB=A÷B
を思い出しましょう。
A=ab, B=cd と考えれば、

=abcd
=AB
=A÷B
=ab÷cd
=ab×dc
=a×db×c
=adbc

とすればよいです。つまり
「分母の分数を逆数にしてかける」
と考えればよいです。

 

(2)【中1】 次の文章は、体育の授業でサッカーのペナルティキックの練習を行ったときの、1人の生徒がシュートを入れた本数とそれぞれの人数について述べたものである。
文章中の【A】にあてはまる式を書きなさい。また、【a】、【b】、【c】にあてはまる自然数をそれぞれ書きなさい。
なお、3か所の【A】には、同じ式があてはまる。

愛知県公立高校2021年3月A日程数学_問2(2)

この問題文の日本語には少し難があるが、シュートに1回成功した人が1人、2回成功した人が2人・・・5回成功した2人・・・などと調査したという意味である。
つまりシュートに成功した回数について、何人が成功したかを度数とする度数分布表になっている。

まず【A】について考える。
題意より「シュートすべての合計=120」という式を立てればよい。よって
0×0+1×1+2×2+3×x+4×3+5×2+6×y+7×2+8×3+9×1+10×1=120
0+1+4+3x+12+10+6y+14+24+9+10=120
84+3x+6y=120
3x=6y+12084
3x=6y+36
x=2y+12

ここで x>0, y>0 であるから、この式を見ながら y=1, 2, と代入していけば、 x  y の組合わせは、
 (x,y)=(10,1), (8,2), (6,3), (4,4), (2,5) 
である。よって
【a】は「5」組となる。

しかし、題意の「最頻値は6本」を満たすためには、
 y>3 かつ y>x 
でなければならない。これを満たす組合わせは、
 (x,y)=(2,5) 
だけである。よって
【b】は「2」
【c】は「5」

 

(3)【中2】 図のような池の周りに1周 300 m  の道がある。

愛知県公立高校2021年3月A日程数学_問2(3)-1

Aさんは、S地点からスタートし、矢印の向きに道を5周走った。1周目、2周目は続けて毎分 150 m で走り、S地点で止まって3分間休んだ。休んだ後すぐに、3周目、4周目、5周目は続けて 100 m で走り、S地点で走り終わった。
Bさんは、AさんがS地点からスタートして9分後に、S地点からスタートし、矢印の向きに道を自転車で1周目から5周目まで続けて一定の速さで走り、Aさんが走り終わる1分前に道を5周走り終わった。
このとき、次の①、②の問いに答えなさい。

① Aさんがスタートしてから x 分間に走った道のりを y m とする。AさんがスタートしてからS地点で走り終わるまでの x  y の関係を、グラフに表しなさい。

愛知県公立高校2021年3月A日程数学_問2(3)-2

まずAさんが行った順に、時間の経過を計算する。
1周目と2周目は、それぞれ 300÷150=2 分であり、2周の合計は4分間。つまり最初の0分~4分の間はこのペース。
次に3分の休憩を取ったので、4~7分は距離が変わっていない。
その後3周目から5周目までは、それぞれ 300÷100=3 分であり、3周の合計は9分間。つまり7分~16分の間はこのペース。
以上の時間の流れを図に色分けして書きこむと次のようになる。

愛知県公立高校2021年3月A日程数学_問2(3)-2-Aさんの時間

そして1周 300 m と決まっているので、マークからマークの間は必ず y  300 ずつ増えていく。
ただし休憩の間は y が変わらず、水平線になる。
これらに注意して、次のように印をつけることができる。

愛知県公立高校2021年3月A日程数学_問2(3)-2-Aさんの変化の割合

最後に、これらの点を線で結べばグラフが完成する。

愛知県公立高校2021年3月A日程数学_問2(3)-2-完成

 

② BさんがAさんを追い抜いたのは何回か、答えなさい。

Bさんが走り始めた9分目のとき、Aさんは残り3周あった(2周しか完走していなかった)。
2人が一緒に走っていた時間帯は、9分目~15分目までである。

愛知県公立高校2021年3月A日程数学_問2(3)-2-Bさんの出発

Bさんの方が早く完走したので、Bさんは、Aさんが残り3周を走る様子をすべて目撃できたことになる。
よって追い抜いた回数は3回と分かる。

直感的にはこれで解答できるが、もう少しグラフで考える。

上のグラフは y 軸が「走った合計」の距離になっているので分かりにくい。
Aさん、Bさんのそれぞれが「何分後に何周目の何メートル地点を走っているのか」を分かりやすく表示するためには、1周 300 m を走るごとに、距離( y )を0メートに戻すようなグラフを描くべきである。具体的には次のようになる。

愛知県公立高校2021年3月A日程数学_問2(3)-2-Bさん追い抜く様子

黒い線がAさんが走った様子であり、赤い線がBさんが走った様子である。黄緑の点が交点、つまり追い抜いた点である。

よってBさんはAさんを3回追い抜いた。

 

【3】次の(1)~(3)までの問に答えなさい。

ただし、答えは根号をつけたままでよい。

(1)【中2】 図で、DはABCの辺AB上の点で、DB=DCであり、Eは辺BC上の点、Fは線分AEとDCとの交点である。
∠DBE=47 、∠DAF=31 のとき、∠EFCの大きさは何度か、求めなさい。

愛知県公立高校2021年3月A日程数学_問3(1)

DB=DCより二等辺三角形の性質により、∠DBC=∠BCD=47 
また外角の公式から、∠ADC=∠DBC+∠BCD=47+47=94 
よって、∠EFC=180(94+31)=180125=55

 

(2)【中3】 図で、四角形ABCDは、AD//BC、∠ADC=90 の台形である。Eは辺DC上の点で、DE:EC=2:1 であり、Fは線分ACとEBとの交点である。
AD=2 cmBC=DC=6 cmのとき、次の①、②の問に答えなさい。

愛知県公立高校2021年3月A日程数学_問3(2)

①【中3】 線分EBの長さは何cm か、求めなさい。

題意から分かる長さや角度を書き込むと下図のようにいなる。

愛知県公立高校2021年3月A日程数学_問3(2)-長さ

三平方の定理から
EB=62+22=36+4=40=210
よって
210 cm

 

②【中3】 ABFの面積は何cm2 か、求めなさい。

ABF=ABCFBC で計算する方針でいこう。

するとCEFの面積を求める必要があるので、それを出しておく。そのためにCEFBEC を示す。

まず、ACDEBC
よって、∠EBC=∠ACD

CEFBECについて、
∠EBC=∠ACD
また共通の角だから、
∠CEF=∠BEC
2角が等しいので、
CEFBEC

相似比から、
EB:EC210:2=2:EF
210EF=4
EF=4210=210=21010=105
よって、
EF:EB=210:105=2:15=10:1
よって、
FBC=910EBC=910×12×6×2=275
以上から、
ABF=ABCFBC=12×6×6275=18275=18×5275=90275=635
よって、
635 cm2

 

(3)【中1・中3】 図で、DはABCの辺BC上の点で、BD:DC=3:2 、AD⊥BCであり、Eは線分AD上の点である。
ABEの面積がABCの面積の935倍であるとき、次の①、②の問に答えなさい。

愛知県公立高校2021年3月A日程数学_問3(3)

①【中1】 線分AEの長さは線分ADの長さの何倍か、求めなさい。

BD:DC=3:2 より、ABDABC35倍である。
よって、線分AEの長さは線分ADの長さの x 倍だとすると、
ABC×935=ABC×35x
よって、
935=35x
であるから、これを解いて
x=37

 

②【中3】 ABEを、線分ADを回転の軸として1回転させてできる立体の体積は、ADCを、線分ADを回転の軸として1回転させてできる立体の体積の何倍か、求めなさい。

まず回転してできる円錐の底面の半径は32倍であるから、底面積は94倍である。
そして高さは37倍であるから、合わせて、
94×37
これを計算して
2728

 

あとがき

毎年の難易度に比べれば、全体的には標準的な内容でした。
高得点を狙う受験生にとっては、つぎの問題が合格点の分かれ目になったかもしれません。

大問1-(2)の問題は、作業ミスを誘発しやすかったかもしれません。多くの人が「xを代入してyを求める」手順に慣れていると思います。しかし【a】では逆に「yからxを求める」手順に逆転していました。人によっては情報を整理する過程で、xとyを逆に書くという作業ミスを誘発しやすい問題でした。【b】は「最頻値」からxやyの変域や大小関係を思いつけたか否かがポイントになったことでしょう。

大問2―(3)―②の問題は「1回」と誤答した人が多かったかもしれません。単純にBさんのグラフを書き込むと交点が1つしか見つけられなかったので違和感を覚えて困った人も多かったのではないでしょうか。

大問3―(2)―②の問題は、直感的に方針が立ちにくいです。大局的に計算の方針を定めて、逆算して細かな計算を行うという「作業の段取り」を意識することが大切でした。

大問3―(3)―②の問題は、立体の「高さ」の本質を理解していなければ、①の答えが②で「高さの倍率」として使えることを思いつけなかったかもしれません。小学生で三角形の面積が高さに比例することを色々とやりましたが、その感覚があれば思いついたのかもしれませんね。

余談ですが、

大問2―(2)の問題は、日本語がおかしいです。ちょっと出題ミスにギリギリ近い日本語の崩壊。すぐに度数分布だと分かった人は良いですが、読解力のある人ほど混乱したかもしれません。コロナ禍で出題の方針が急変更され、問題作成の現場はとても混乱していた様子がうかがえます。

解説に登場したグラフや図、数式の表示について

図やグラフについて

前半の円や二次関数のグラフはプログラミングで作成しました。
後半の図は公開されている問題をスキャンした画像と、それを2次加工した画像です。

数式について

数式はパソコンで入力するのが難しいですよね。
このブログではTEX(「テフ」と読みます)という、数式専用の言語を使って数式を書いています。だから数式がキレイに表示できます。
これもプログラミングみたいなものです。

TEXは理系の大学生がレポートや論文を書くときに便利です。
理系の大学生は知っておくと便利です。
高校生でもバカロレアDPコースの生徒たちなど、レポート提出の多い人には便利だと思いますよ。

興味のある方は調べてみてください。

図やグラフはプログラミングで作成

大問1(10)および大問2(1)のグラフや図を作るのにつかったプログラムは以下です。
プログラミング言語はPython(パイソン)です。
残念ながら中学生では理解するのがとても難しいです。高校の数学を使います。

なお、パイソンのプログラミングは、プログラミング教室「マイクラミング」の「プロコース」で開講しています。
小学生から大学生まで受講しています。興味のある人は、お問い合わせくださいませ。

---------------------

import random as rd
import time as tm
import numpy as np
import matplotlib.pyplot as plt
import math

def initGraph(title="graph", xLabel="x", xMin=-1.0, xMax=1.0, yLabel="y", yMin=-1.0, yMax=1.0, N=100):
  fig = plt.figure(figsize=(5,5), dpi=N)
  axs = fig.add_subplot(1, 1, 1)
  plt.title(title)
  plt.xlabel(xLabel)
  plt.ylabel(yLabel)
  plt.xlim(xMin, xMax)
  plt.ylim(yMin, yMax)
  plt.gca().spines['right'].set_visible(False)
  plt.gca().spines['top'].set_visible(False)
#  plt.xticks(fontsize=20)
#  plt.yticks(fontsize=20)
  axs.set_aspect(1)
  return axs

def addDot(axs, x, y, text=True, arg="", c="black", fs=5):
  axs.plot(x, y, '.', markersize=10, c=c)
  if text:
    if arg != "":
      plt.text(x, y ,arg, fontsize=fs)
    else:
      plt.text(x,y," ({}, {})".format(x,y), fontsize=fs)

def addDots(axs, x, y, args="", line=True, fs=5):
  c=0
  xs = []
  ys = []
  for t in x:
    xs.append(x[c])
    ys.append(y[c])
    if args!="":
      addDot(axs, x[c], y[c], text=True, arg=args[c], fs=fs)
    else:
      addDot(axs, x[c], y[c], text=False)
    c+=1
  if line:
    xs.append(xs[0])
    ys.append(ys[0])
    axs.plot(xs, ys, linewidth=1)

def addLines(axs, x, y, c="black", tx=0.0, ty=0.0, text="", fs=5):
  axs.plot(x, y, linewidth=1, c=c)
  if text!="":
    plt.text(tx,ty,text, fontsize=fs)

def addCircle(axs, x=0.0, y=0.0, r=1.0, s=0, e=2*np.pi, c="black"):
  theta = np.linspace(s, e, 100)
  xs = x + r*np.cos(theta)
  ys = y + r*np.sin(theta)
  axs.plot(xs, ys, linewidth=1, c=c)

def addDotsOnCircle(axs, r, thetas, args, line=True, fs=5):
  c=0
  xs = []
  ys = []
  for t in thetas:
    x=r*math.cos(t)
    y=r*math.sin(t)
    xs.append(x)
    ys.append(y)
    addDot(axs, x, y, text=True, arg=args[c], fs=fs)
    c+=1
  if line:
    xs.append(xs[0])
    ys.append(ys[0])
    axs.plot(xs, ys, linewidth=1)

def showGraph(arrows=True, grid=True):
  if arrows:
    #x軸
    plt.axhline(0, linewidth=1, color="black")
    #y軸
    plt.axvline(0, linewidth=1, color="black")
  if grid:
    #方眼線(グリッド線)
    plt.grid(True)
  plt.show()


def Toi1_10():
  A_theta = 4*math.pi/7
  B_theta = 4*math.pi/3
  C_theta = 5*math.pi/3
  AD_theta = math.pi/3
  Radis   = 6.0
  axs=initGraph(xMin=-7.0, xMax=7.0, yMin=-7.0, yMax=7.0)
  addDot(axs,0.0,0.0,True,"O", fs=20)
  addCircle(axs, r=Radis, c="gray")
  addDotsOnCircle(axs, r=Radis, thetas=[A_theta, B_theta, C_theta], args=['A','B','C'], fs=20)
  addCircle(axs, x=Radis*math.cos(A_theta), y=Radis*math.sin(A_theta), r=1.5, s=((A_theta+B_theta+math.pi)/2), e=((A_theta+C_theta+math.pi)/2), c="gray")
  plt.text(-1.5, 3.0, r"$30^{\circ}$", fontsize=12)
#  addDotsOnCircle(axs, r=6.0, thetas=[AD_theta, B_theta, C_theta], args=['A\'','B','C'], fs=20)
  addDots(axs, x=[0.0, Radis*math.cos(B_theta), Radis*math.cos(C_theta), 0.0], y=[0.0, Radis*math.sin(B_theta), Radis*math.sin(C_theta), 0.0], line=True)
  showGraph(arrows=False, grid=False)

def Toi2_1():
  axs=initGraph(xMin=-7.0, xMax=7.5, yMin=-1.0, yMax=12.0)
  plt.text(6.3,-0.9,"X", fontsize=20)
  plt.text(-0.9,11.0,"Y", fontsize=20)
#  addDots(axs, x=[0.0, 6.0, 0.0, -4.0], y=[0.0, 9.0, 9.0, 4.0], args=['O','A','C','B'], line=True, fs=20)
  addDots(axs, x=[0.0, 6.0, 0.0, -4.0], y=[0.0, 9.0, 9.0, 4.0], args=['O','A(6,9)','C(0,9)','B(-4,4)'], line=True, fs=20)
  x = np.arange(-7.0, 7.0, 0.01)
  y = x*x/4
  addLines(axs,x,y,"gray", -6.0, 9.0, r"$y=\frac{1}{4}x^{2}$", fs=20)
  addDot(axs, 1.0, 1.5, text=True, arg=r"$E(t,\frac{3}{2}t)$", c="red", fs=20)
  addLines(axs,x=[0.0,1.0],y=[9.0,1.5],c="red", fs=20)
  showGraph(arrows=True, grid=False)



if __name__ == "__main__":

  Toi1_10()
#  Toi2_1()

---------------------

※プログラムで難しいところ

三角関数(sinθ, cosθ)や極座標を使っていますので、高校の数学です。円O上の点A,B,Cの座標を、円の半径 Radisと、x軸とOA、OB、OCのなす角、A_theta、B_theta、C_theta を使って求めています。その計算に三角関数を使います。

また∠BACを図示するために、円周上の点Aを中心に弧を描いています。点Aから見た、x軸方向とAB、ACのなす角を、A_theta、B_theta、C_theta を使って求める必要があります。この計算をするために、プログラミングする前に紙面上で幾何学の問題を解く必要がありました。

 


進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたりますが、当塾の理念に反するので生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校

私立高校

中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL