個別指導塾、学習塾のヒーローズ。植田(名古屋市天白区)、赤池(日進市)の口コミで評判!成績が上がる勉強方法が身につく!振替、自習も便利!
// 条件1に該当しない場合の処理

プログラミング

「三角関数は本当に必要なのか?」問題とは!?

塾長です。

いやー、めっちゃ盛り上がってますね。

三角関数不要論の出どころは?

国会の中に「財政金融委員会」というのがあります。衆議院の常任委員会です。
予算委員会と同じように税制やお金の使い方について議論する場ですから、議論のネタは何でもアリです。

その会議で5月17日、藤巻健太議員(日本維新の会)が発言した内容が発端です。
中でも、ご本人のツイートがきっかけで盛り上がっているようです。

藤巻健太議員のツイート

三角関数は本当に必要なのか?
そんなことより、金融経済を教えるべきではないのか?

ソースはご本人のツイッターです。

三角関数よりも金融経済を学ぶべきではないか
藤巻健太議員のツイート(@Kenta_Fujimaki)

藤巻議員は大学受験で数学を使い、大学へ進学してからは経済を学ばれたとのこと。
それでも、大学受験を最後に三角関数は1回も使わなかったそうです。
そういうご経験から、

学校では三角関数を教えるよりも金融教育をすべき

との主張に至ったそうです。

世間の反応

リプライツイートやネットニュース、YouTubeなどで様々な反応があったようです。
賛否両論から感想文まで・・・

その中から主なものを紹介します。

ユーチューバーの反応例

人気ユーチューバー「はなおでんがん」さんの反応

理系を敵に回した衆議院議員へ。

さすが、積分サークルは言うことが違いますね!

放送局の反応例

YouTube上の報道番組「アベプラ」の反応

【三角関数】日常生活で使わない=学ぶ価値なし?人間の根源的な欲求を満たす?数学必修の意味

すぐ動画ネタにされています。
みなさん、仕事が速いですね。

何度も盛り上がる不要論

昔からこの手の話は少なからずありましたが「負け犬の愚痴だよね」と一蹴されてきました。
根強い「学歴信仰」のせいでしょう。

ところが最近は様子が変わってきました。
変化のきっかけはコロナ渦と働き方改革。そう考えて良いでしょう。

学校でもオンラインでも、どちらでも学べることが分かりました。
部活動の代わりに学外の民間クラブも活用できるようになりました。

同時に、コンピューターの活用が当たり前になりました。
YouTubeやアプリなどを使って、効率よく勉強できるようになりました。

「わざわざ学校に行く必要はないのでは?」
「自分の好きなものを好きな順番で学べばよいのでは?」

かつての愚痴は決して空想などではなくなり、三者三様に理想を語るようになりました。
かくして「教育の合理化」を議論する風潮が高まっているのだろうと思います。

何より、日本は30年間ずっと経済成長が止まっています。
この事実もまた、既存の仕組みをオワコン化したり老害化したりする理由なのでしょう。

探しやすいところで例を挙げると、こんな感じです。

教育経済学

学校についての例

教科ごとの例

受験についての例

このように、勃発している議論を上げればきりがありません。
三者三様の立場で、意見も十人十色。

もちろん、それぞれに正しいのだろうと思います。

ここは塾長のブログなので、最後に私の意見を2つほど書きたいと思います。

教育問題の本質から目を逸らしてはいけない

1つ目に言いたいことは、問題の本質を見失ってはいけない、ということです。

この種の議論は、きっと半分は炎上目的なのでしょう。
アクセス数を稼ぐために、話題の切り取り方が極端で、切り口がキレッキレになる傾向です。
少し用心しましょう。

さらに、次のような観点で、少し冷静になる必要があります。

時代遅れの二元論

AがダメならBだ!

このような議論のやり方を二元論と呼びますよね。
答えが1つに決まるような問題を考えるには便利ですが、SDGsの時代には役に立ちません。
10人いたら10通りの答えがあり、しかも、それらをできるだけ同時に満たさなければいけない・・・今はそういう時代です。

リツイートを見れば、いろいろな意見が出ています。
どれが正しいとは言い切れませんし、間違っているとも言い切れません。
それぞれに正しいのでしょう。

必ずイタチごっこの議論になる

ここで、もしも教科書から三角関数を外して、代わりに金融教育を入れたらどうなるでしょうか?

私は、また同じ問題が必ず起きると想像しています。

つまり、誰かがまた、

金融なんて学ぶ必要がありますか?
そんなことより、〇〇を学ぶべきです。

と言い出すことでしょう。

なぜなら、金融を学んでも、ほとんどの人にとって役に立たないからです。
知らなくても困らないからです。

確かに、金融経済の活用は、これから更に身近になるし重要になると思います。
個人で関わる機会がどんどん増えると思います。
もちろん、これには賛成です。

しかし「大多数の人」にとって見れば、やっぱり金融の知識は不要です。

なぜなら、分かりやすくて優しいサービスが登場するからです。
難しいことを知らなくても、便利に使えるアプリや、親切な代行サービスが登場するからです。
知らなくても金融サービスを受けられるのです。

三角関数の恩恵を多くの人が受けているにも関わらず、それを知らなくても生活できます。

それと全く同じ話になるからです。

ですから、何かにつけ「必要か?、不要か?」などと議論するのは、そろそろ体力の消耗でしかないなと思っています。

問題の本質は教育の不自由!

100人いたら100通りの解があり、できるだけ100通りの全てを満たすべき。

今はそういう時代です。
教育も例外ではありません。

5教科だけで生徒を評価しないこと。
みんなでオール5を目指すのは、多くの生徒にとって時間の浪費です。
また5教科だろうと9教科だろうと、それだけでは評価の視野が狭すぎます。

例えば、5段階評価(5点満点)で12とか100とかをゲットしても良い時代でしょう。
こういう柔軟な発想が問われているのです。

もちろん、どの分野もそこそこできる、というオールマイティも、それはそれで特別に評価されて良いです。

はたまた、教科の数を100教科とか5000教科とかに増やしてしまい、高い次元で評価するのもアリでしょう。

このように、教育のメタ情報科を過去から未来にわたって「いつでも再定義できる」というシステムの中で、
子供たちは何をどのような順番で学んでも良い!
という自由で人間的なシステムが理想であるはずです。

苦手なもので消耗するより、得意なものや好きなものから延ばせばよいです。

このような学びが「できない理由」を1つ1つ取り除いていくこと。
今後はそういう取り組みが必要でしょう。

これまでは不可能でした。

なぜなら、人間の手作業で、紙で、ハンコで、生徒の履修や成績を管理してきたからです。
人間の小さな脳みそと少ない体力では、理想が実現できなかったからです。

今はコンピューターが安くて当たり前ですから、本当は色々とできるようになっているはずです。
逆にコンピューターにできることを、現代でも相変わらず人間にやらせるから、ブラックになるのです。

もっと自由に学べる環境を、どんどん用意できるはず。

理想が分かり切っているのに、それに向けて現状を変えようとしない。
こうした大人側の怠慢や不勉強さの犠牲になるのは、いつも子供たち。

これが問題の本質です。

教育をもっと自由にしましょう。

補足

ちなみに「自由」は「自分勝手」や「無秩序」の意味ではありません。
この種の議論は、ペリーが黒船で日本にやってきた時代に、もう済んでいます。

何の役に立つかを人に聞いたら負け

2つ目に言いたいことは、

「美味しい話は、誰も教えてくれない。」

ということです。

GAFAが世界を牛耳ってしばらく経ちました。
彼らは人工知能や量子コンピューターで世界をリードしています。
さらに政治やエネルギー網にまで手を伸ばし始めています。

ロシア政府にアメリカの1企業の社長がケンカを吹っかけています。

彼らはどうして世界を支配できたのでしょうか?

答えは明白です。

みんなが

「こんな勉強、いったい何の役に立つんだい?」

と言うような知識や技術を、ひたすら集めたからですよ。

日本の企業はどうでしょうか?

大卒生を欲しがりますが、大学で学んだことを仕事に活用して来ませんでした。
学歴の無駄遣いです。

部下が大学で何を専攻し、どんな卒論や修論を書いたか?

日本のサラリーマンで、これを言える上司は全体の何割くらいでしょうか?

おそらく、ほとんどいないでしょう。
政治家だって「ITや経済に弱い」などと言われています。

だけど学歴や偏差値は気にする。
学歴や偏差値の無駄遣いです。

アメリカの企業は違います。少なくとも急成長を果たしてきた企業は。
大学の研究を企業が積極的に使うのです。
中国もです。インドもです。他の成長している国もです。

また、各分野の専門家を数万人規模で集めて、最先端の情報分析を国家を上げてやらせています。
日本にはそういう行政組織すらありません。

日本が勝てるわけがありません。

勉強を役立たせている人は「役に立ってるよ」なんて教えてはくれないのです。

なぜかって?

そんなの教えたら損だからです。
特許を取ったり、秘密にしたり、誰にも真似されない形にしたりするでしょう。

GAFAが成長している間、

「勉強の何が何の役に立つのか?」

なんてことをGAFAから教えてもらいましたっけ?
教えてもらったとして、同じように行動しましたっけ?

アカウントがバンされたり、検索で上位へ持ち上げられたりしますよね。
あれを判断している人工知能。
高校でやったベクトルを100次元とか200次元に拡張して計算処理をしています。

個人レベルでも違います。
世界で最も売れているゲーム「マインクラフト」は1人のプログラマーが作りました。

あれ、三角関数のお化けみたいなアプリです。

みんな大好き「三角関数」です。

基礎的な勉強ほど、新しいものを生み出す力を秘めています。
しかし普通は気が付きません。

だから、

「何の役に立つのですか?」

などと聞いているようでは負けです。
日本は30年間ずっと負け続けています。

リベンジに向けて

GAFAのような強者に支配されたくない・・・このようなアンチテーゼが Web3.0 構想の始まりです。

今や一部の人や企業だけが、中央集権的に情報や富を支配している世界です。

しかしそうではなく、みんなで少しずつ担保し、分かち合おうではないか!

ブロックチェーンという技術が登場して、このような理想が現実的になりつつあります。

とはいえ、まだ混とんとしています。
似たようなものが乱立しては消えていっています。

それでもWeb3.0の大枠は何となく見えてきています。

そういう意味では、リベンジに向けた流れが少し出て来ました。

勉強が何の役に立つのか?

あなたは、まだ聞いちゃいますか?

プログラミング教室で教えていること

先の「三角関数は本当に必要なのか?」問題がネット上でにぎわっていた時、
私はプログラミング教室の新しいテキストを作っていました。

プロコースのテキストです。

「マインクラフトを作れるようになろう!」

という単元です。

マイクラで作ろう、ではないですよ。
マイクラ「を」作ろう、です。

その一部がこれです。

あちゃー、やらかしてしまいました。

マイクラミングのプロコースのテキストの例1

マイクラミングのプロコースのテキストの例2

子供たちに三角関数を使わせてしまって、どうもスミマセン!
よりによって、sin(サイン)もcos(コサイン)も、両方とも使っちゃっています。

小学生も中学生も高校生も参加している授業だから、影響が大きいです。
どうしましょう。

うっかり三角関数の便利さを伝えるテキストを書いてしまいました。
どうしてもプログラミングには三角関数が必要だと思い込んでいます。
パイソン(Python)だから軽い気持ちで使っちゃったのです。

小学5年生でも三角関数を使える生徒がいるものですから、ちょっと調子に乗っていました。

たいへん、申し訳ありませんでした(笑)

教育を自由に!

冗談はこれくらいにして、

もしも教育が自由であれば、好きなものや得意なものをシェアする投稿が増えるでしょう。

この時、それを自慢話だとか、自分への圧力だとか、いちいちマイナスに捉えないことです。
人は人です。

良いものには素直に「良いね!」「スゴイね!」と言えばよいじゃないですか。

自分と人は違います。
それでOKです。

比較する必要はありません。
他人を妬んでも、自分が不幸になるだけです。

たいていの人は自分のことで精いっぱい。
別に私に向けた発信ではないし、ましてや他意など無いでしょう。

客観的な指標や数字を通じて自分の現状を知ることは大切ですが、それを他人との比較として解釈する必要はありません。
他人と自分を比較したら、どんどん心が不自由になります。

比較しないことが、学びや教育を自由にする第一歩だと思います。

 


進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたります。生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校、菰野高校(三重)

私立高校

愛知高校、中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

高校生プログラミング「情報1」の教科書を徹底比較

情報1の教科書を並べた写真

塾長です。

今年の高校1年生から教科書と指導要領が新しくなりました。
その目玉の1つが「情報1」です。

情報1とは

端的に言うと、こんな教科です。

  • 必須科目です。
  • プログラミングを含んでいます。
  • 大学入学共通テストの受験科目です。
  • 情報処理について学びます。
  • 問題解決やプレゼンの手法も学びます。

実はこの教科書、ビジネスマンからも「欲しい」と話題なんです・・・

社会人も欲しがる教科書だった

もしも内容がコンピューターの仕組みや情報処理だけだったら、ビジネスマンの間でここまでパズらなかったでしょう。

この情報1の教科書は、めっちゃ実用的なんです。
読んでためになるだけでなく、仕事のスキル向上も期待できそうです。

大企業の新人研修みたいな内容

と言えば、分かりやすいでしょうか。
例えば「〇〇が問題だ」と言うときの「問題」の定義もしっかり載ってます。

「問題」=「理想と現実のギャップ」

この定義がいかに重大か。

「うん、めっちゃ大事だよねぇ。」

などと実感したフリをして、意識の高さをアピールするのがビジネスマンのたしなみというものです。
それが、学校の授業でも重視される時代になりましたよ。

さらに「ブレーンストーミング」や「KJ法」、「ペルソナ分析」やプレゼンテーション手法など、およそビジネスマンが体得したいものが載っています。これ読んだら意識の高い会話が得意になりそうです。

それだけ実用的な内容で、まさに「今日から使える」的な内容に仕上がっています。

もちろんプログラミングについても一通り載っています。

事前調査

情報1の教科書の比較について、興味深いサイトがあったので、事前に読んでみました。
こちらの2つのサイトがおすすめです。

  1. 「情報Ⅰ」の教科書とプログラミング言語に関するアンケート結果Monaca Education 2021/10/7)
  2. 情報Iの教科書におけるプログラミング分野の比較と分析河合塾 わくわく★キャッチ! 愛知県立小牧高校 井手広康先生)

上の1から、実教出版や東京都書の教科書に人気がありそうだと分かりました。

また2から、実践的でレベルの高い教科書は実教出版と日本文教出版だと分かりました。
数研出版は1冊の中で多くのプログラミング言語を紹介していることから、個人的に興味が湧きました。

実物を買って読んでみたくなりました。

本屋さんへGO!

新しくできた教科書であるため、3月までは入手が困難でした。高校への配布が優先ですからね。
4月になって購入しやすくなり、本屋さんでも在庫がそろってきました。
そこで、さっそく買いに行って来ました。

名古屋で教科書を買おうと思ったら、正文館本店ですよね。

名古屋市東片端町の通りの写真

実物を見て買いたいときは、リアルな本屋さんに限ります。こんな本屋さんが家の近くにあったら幸せでしょうね。

事前調査で興味のあった実教出版、日本文教出版、東京書籍の教科書は在庫がありました。
しかし数研出版のはありませんでした。

比較してみた!

ということで、この4冊を買ってきました。
それらを読んだ塾長の感想をまとめると・・・こうです!

比較表(あくまでも塾長の主観)

出版社名
教科書名
教科書コード
実教出版
最新情報1
情Ⅰ705
実教出版
高校情報1 Python
情Ⅰ703
日本文教出版
情報1
情Ⅰ710
東京書籍
-新編-情報1
情Ⅰ701
主なプログラミング言語 VBA Python Python
JavaScript (*2)
Python
Scratch3.0
問題解決の概念
問題解決の手法
モデル化の概念
モデル化の手法 ×
シミュレーション技法 ×
アルゴリズムと
プログラミングの基本
プログラムの設計手法 × × ×
オブジェクト指向 × × ×
統計や検定の技法
文章の読みやすさ
図解の分かりやすさ
資料ページの充実
総合点 (*1) 20

教科書の王道

23

実践的で技術者志向

20

ジェネラリスト志向

17

教養を深める用語集

(*1) ◎:3点、〇:2点、△:1点、×:0点
(*2) JavaScript の説明は3ページ程度です

 

全体的によかったところ

どの教科書も共通してよかった点は次の通りです。

  • 目次が見やすく、タイトルの意味が明確
  • プログラミングの説明が丁寧
    どの教科書もフローチャートを併記し、なおかつ1行1行の意味も載せてありました。
  • 全ページがカラー印刷で、とても図表が豊富
  • メインで取り扱わないプログラミング言語についても少し言及
  • 教科書のページ番号を10進数と2進数で併記

 

教科書ごとの感想

今回は教科書ごとに、とても個性を感じました。同じ出版社でもタイトルが変わると雰囲気が変わりました。

実教出版「最新情報1」

言葉の定義や使い方がとても丁寧で、教科書の王道という感じでした。
網羅度が高く、難易度も適切です。

文章と図表のバランスが良く、とても読みやすく仕上がっていました。
実教出版さんは、情報処理資格の書籍を多く取り扱っているだけに流石です。手慣れている感じがしました。

プログラミングは少し物足りなさを感じました。

実教出版「情報1 Python」

タイトルに「Python」と冠しているだけのことはあります。4冊の中でもっともプログラミングを専門的に学べる内容でした。

ただし問題解決や情報デザインについては、網羅はしているものの記述があっさり。他の教科書よりも内容が薄く感じました。
その代わり、モデル化やデータ解析、シミュレーション、ソフトウェア設計については肉厚でした。
タイトルのコンセプトどおり、章構成に強弱がついています。

特に「オブジェクト指向」や「データの分布と検定」についてしっかり載せていたのは、この教科書だけでした。
4冊の中で最もプログラミングを実践的に学べる教科書です。

問題解決やプレゼンテーションの実践については、自分でググりながら進める必要があります。

日本文教出版「情報1」

問題解決の取り組み方やプレゼンテーションの方法について、かなり詳しく取り扱っています。

またプログラミングは浅すぎず深すぎず、全体的にバランスよく学べるようになっていました。

全てを把握したうえで最終的にコンピューターのことは専門家に任せる・・・そんなジェネラリスト志向の教科書です。

バランスの良さで実教出版の「最新情報1」と迷いますが、こちらの方が難易度が高めです。
実際に手を動かしてプログラミングを実践できます。
JavaScriptやHTML、CSSについても説明があります。

すこし図がごちゃごちゃしている印象です。
「官僚が作るパワーポイントみたい」と言えば、雰囲気が伝わるでしょうか。

東京書籍「新編 情報1」

読みやすさで言えば、ダントツでこの1冊です。

多くの概念や知識を驚くほどコンパクトに分かりやすく説明しています。
しかも、ほとんどの用語にルビ(ふりがな)をつけています。それでいて内容は薄くありません。
巻末には、Python、JavaScript、VBA、Swift、ドリトル、Scratch3.0 といった6種類ものプログラミング言語について説明しています。

ほんとうに、よくこれだけキレイにまとめたものです。
一家に一冊は欲しいです。

コンピューターや理系科目に苦手意識のある人は、まず、この1冊から始めたらよいかと思います。

ただし「モデル化とは,対象を単純化して表現したものである。」としてしまうなど、用語の説明が雑に感じる所がありました。

おわりに

一般の書籍に比べると、教科書の組版の品質はとてもレベルが高いなぁ、とあらためて実感しました

値段は一律で、どれも1冊¥1100円くらいでした(細かい数字は忘れました)。

ちなみに、店頭では教科書を現金でしか販売していませんでした。カードは使えませんでした。
おそらく出版社から買い取りで在庫を置くのでしょう。
在庫は課税されますから、カード決済で在庫処分が遅れるのはお店としてはリスクが大きいです。

教科書は誰でも購入できるはずですが、いざ買うとなると不便です。
取扱店が限られている上に、一般向けにお店を構えるところが少ないです。

日本は教科書の購入が少し面倒ですよね。
良いものが多いだけに、もっと気軽に購入できるようにして欲しいものです。

 


進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたります。生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校、菰野高校(三重)

私立高校

愛知高校、中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

受験を終えたらプログラミングや3Dモデリングを学ぼう

コンピューターを使うイメージ

塾長です。

受験生のみなさん、受験勉強お疲れさまでした。

さて、卒業も受験も終え、きっと今は時間を持て余していることでしょう。
教室では早くも高校の予習を始めておりますが、プライベートではいかがでしょう?

新型コロナの蔓延防止や花粉症で外出を控えているのであれば、読書やコンピューターがおすすめですよ。
ネットをやるなら、情報リテラシーを意識しましょう。

そこで今回は、情報リテラシーとプログラミングの関係について、1つの例を書いてみましょう。

情報リテラシーと数学の関係

最近、ちょっと話題になった有名な話があります。
次のニュースを見たとき、あなたならワクチンの効果をどう評価しますか?

問1:効果なし?

ウィルスに新規感染した人の約6割がワクチンを2回接種していたことが判明。

この調査から、ワクチンの効果が無いと判断するのは正しいでしょうか?

ソース:「オミクロン株感染で入院の6割は2回接種済み 国立感染研の分析で判明」Science Portal(2022/02/01)など

もう1つの事例です。こちらは、ここ数日間で話題に上ってきました。

問2:逆も言える?

東大の鳥海教授がツイッターの投稿をクラスター分析したところ、次のことが判明。
ロシアのウクライナ侵攻を正当化する主張「ウクライナ政府はネオナチ政権だ」などを拡散している人たちの88%は、ワクチン接種に反対する投稿も拡散していた。

それでは逆に、ワクチン接種に反対する人の多くは、ロシアの主張を拡散している人だと言えるでしょうか?

ソース:「ツイッター上でウクライナ政府をネオナチ政権だと拡散しているのは誰か」YHAHOO!ニュース(2022/3/7)

このようなニュースは毎日のようにネット上に流れていますが、よく考えないと勘違いを起こしてしまいます。
もしかしたら印象操作に載せられてしまうリスクさえあります。

それでは答え合わせです。

答え

問1

ワクチンの効果はあったと言える。

この種のニュースの秘密は、ワクチンを「接種した人」と「接種していない人」の人数比にあります。
ワクチンの2回接種まで完了した人の割合は、日本の総人口の79%を上回っています。
対象者約1億2千700万人のうち、約1億人が2回接種済みで、残り2千700万人がそれ未満の接種です。
ソース:「チャートで見る日本の接種状況 コロナワクチン」日本経済新聞や首相官邸の発表など)。

例えば問1のニュースの例では、オミクロン株の新規感染者122人が対象でした(昨年の感染者はまだ少なかったです)。
うち77人が2回接種済みで、40人が未接種、他は3回接種や1回接種だったそうです。
これを母数も合わせてみれば、

接種済みの感染率 77÷1億=0.000077%
未接種での感染率 40÷2700万=0.0001481%

両者を割れば、未接種の人の方が1.9倍も感染していることになりました。
あくまでも当時での数字でしかありませんが、少なくとも当時はワクチン接種で感染リスクが半減していたと言えます。

問2

逆は言えない。ワクチン接種に反対していることとウクライナ戦争の話はもともと関係ない。

何より上のソース記事を最後までよく読めば、ちゃんと「ワクチン接種に反対する人のわずか4%」と書かれています。
これについては後で計算してみますが、何はともあれ、よく読むことが大切ですね。
もしも書かれていない場合は、別の情報ソースなども合わせて、ちゃんと母集団の数や相対度数などを確かめる必要があります。

ちなみに、この種の問題は小学6年生の3学期「なかまに分けて」で習います。
あるいは、高校1年生の数1「集合と論理」でも習います。

いわゆる「りんごが好きな人」「みかんが好きな人」「両方とも好きな人」の問題です。

「りんごが好きな人」は40人で、「みかんが好きな人」は80人でした。
このとき「りんごが好きな人」の約88%はみかんも好きでした。
さて「みかんが好きな人」はりんごも好きだと言えるでしょうか?

40人の88%=35人ですから「両方とも好きな人」が35人です。
つまり「みかんが好きな人」の80人のうち35人がリンゴも好きということになり、半数未満でした。
よって、「みかんが好きな人」はりんごも好きだとは言えません。

このような話しと同じですね。
そもそも、この分析は

「特定の主張が特定の集団によって、繰り返し意図的に拡散されているのではないかないか?」

という疑いをデータ分析の観点から明らかにしようという試みでした。

このソース記事の中では、

Dクラスタは「ウクライナ政府はネオナチである」というロシアの主張を拡散しているツイート群で,228ツイートが10,907アカウントによって30,342回拡散していました.(中略)クラスタDだけ2.8と大きいようです

という分析もされています。
つまり、特定の集団が「ウクライナ政府はネオナチである」という同様のツイートを1人当たり平均2.8回も繰り返し拡散していたことになります。
これは「意図的な拡散」であったと言えるでしょう。
とても興味深いですね。

ですが、こんな素敵な調査でも、その読み方や解釈を間違えてしまったら、自分も意図せず陰謀論を担いでいる側になってしまいます。

話がそれましたが、今回は「逆は成り立たない」が正解でした。

ワクチンを接種しない自由も認められています。
ワクチンを接種するか否かという選択の話と、陰謀論でワクチンを反対している人の話は、別の話です。
両者は分けてとらえるべきでしょう。

このように情報は気を付けて読む必要がありますね。

ところで、算数や数学に置き換えることができるということは、プログラミングでも話ができます。

数学ならばプログラミングにできる

数学の式で関係を表す

そこで問2の話題について、数学の集合で表してみましょう。

$N=${ロシアの主張を拡散する人の集合}(ロシアによるウクライナ侵攻を正当化する人)
$V=${ワクチン接種に反対する人の集合}

すると

$N \cap V=${ロシアの主張を拡散し、かつ、ワクチン接種に反対する人の集合}

$ V – (N \cap V) =${ワクチン接種に反対する人の中で、ロシアの主張を拡散する人の集合}

などと表せますから、$V$ と $N \cap V $ を比較すれば良いということになります。

ここから数学の慣例で、集合の要素の数を$n(集合)$と表すことにします。
あくまでも今回は思考の練習ですから、値は適当にデフォルメします。

いま、適当に $n(N)=10$とします。
本当の数は10,907アカウントですが、面倒なので全体的に $ \frac{1}{1000} $ 程度に規模を縮小しました。

すると $n( N \cap V )$ はその88%ですから、$n( N \cap V )=10 \times 0.88 \risingdotseq 9$ と設定すればよいでしょう。

さらに、その9人は $V$の4%ですから、$n(V) = n(N \cap V) \div 0.04 = 225$ と設定します。

これで練習用の数字がそろいました。

プログラミングで表現する

それでは、上記の関係をプログラミングで実験してみましょう。

なおプログラミング言語は Python(パイソン)を使います。
Python は無料で使えるプログラミング言語です。人気ランキングで上位にいることでも有名です。
使ってみたい方は、Pythonの公式ホームページからダウンロードしてインストールしてみてください。

さて、Python は集合の計算もプログラミングできます。

Python では $n(U)$ を $len(U)$ とし、$N \cap V$ を $N \& V$ と書きます。

それでは集合Nや集合Vを具体的に定義していきましょう。
本当なら集合の要素はツイッターのアカウント名なのですが、プログラミングの都合で、今回は簡易的に整数の番号を使うことにします。

V = set( [ i for i in range(255) ] )
len(V)
-> 225 (ワクチン反対)

N = set( [ i for i in range(216,226) ] )
len(N)
-> 10 (ロシアの主張を拡散)

len( V – (N & V) )
-> 216 (ワクチン反対だが、ロシアの主張を拡散していない)

len( N & V )
-> 9 (ワクチン反対、かつ、ロシアの主張を拡散)

len( N – (N & V) )
-> 1 (ワクチンに反対していない、かつ、ロシアの主張を拡散)

それでは、それぞれの相対的な大小関係を視覚的に確認してみましょう。
それぞれの集合に含まれる要素を並べて比較します。

V – (V & N) ・・・(ワクチン反対だが、ロシアの主張を拡散していない)
-> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215}

V & N ・・・(ワクチン反対、かつ、ロシアの主張を拡散)
-> {224, 216, 217, 218, 219, 220, 221, 222, 223}

N – (V & N) ・・・(ワクチンに反対していない、かつ、ロシアの主張を拡散)
-> {225}

はい、ワクチン反対派の多くはイデオロギーや政治的な思想などとは関係ないことが明らかですね。

算数ではVの帯グラフとNの帯グラフが重なったような図を描いて、この種の問題を解きます。
数1ではベン図を使います。
そしてPythonのプログラムでは上のようになります。

これらのどれを使って表現するにしても、必ず2つのグループの大きさ(人数)や、その重なり領域の大きさ、といった具体的な情報が必要です。
それらの1つでも分からなければ、情報を正確に網羅できないことが分かるでしょう。

このように数学やプログラミングに慣れていれば、情報の欠落に気が付きやすく、それだけダマされにくいと言えます。

補足:pythonの文法について

上のプログラムでは Python の「リスト内包表記」という文法を使って記述している部分があります。
例えば以下の行です。

V = set( [ i for i in range(255) ] )

特に、

[ i for i in range(255) ]

の部分がリスト内包表記です。
配列を表すカッコ “[ ]” の中に、繰り返し構文を1行のスタイル書いて、配列の要素を定義しています。
そして、この意味は、

「0から始まる255個の整数を並べて配列をつくりなさい」

となります。つまり1行全体としての意味は、

「0から始まる255個の整数を並べて配列をつくり、それを配列型から集合型へ変換してから、変数Vに入れなさい」

となります。
その結果として変数Vには整数0~254が並んだ集合{0,1,2,3,…253,254 }が入っていることになります。

リスト内包表記を使えば、配列の定義を簡潔に書くことができます。
ただし全てのプログラミング言語で使えるわけではありませんので、要注意です。

Python、Haskell、Scheme、Common Lisp、F#などでは使えます。
しかし古くからあるメジャーな言語、Java、JavaScript、C、C#、Objective C、BASIC、VB や、人気の Ruby や PHP などでは使えません。

論理国語の限界

今年の4月から高校も教科書改訂です。
この教科書改訂をもって10年の教育改革「高大接続教育改革」が一通り出そろうことになります。

なかでも国語は論理性が重視され、説明文や論説文の比重が非常に大きくなった一方、小説や物語文は縮小しました。一部では「文化軽視」と批判もされています。

国語の教育を通じて「論理的な思考力」を強化しようという改革の趣旨が色濃く反映されています。

一見すると正しいように思いますが、数式やプログラミング言語に比べると、やや首をかしげたくなる部分があります。

まず、実用性という意味で疑問です。
難しい文章は誰からも読まれないし、読みたくもない、というのが社会の実情です。

論理的に難解な文章を読み書きできる能力を身に着けました。
でも、その人のコミュニケーションは言葉が難しくて、誰も耳を傾けません。

それって、社会的に価値のある能力を身に着けたと言えるのでしょうか?
大いに疑問です。

次に言語の機能という意味で疑問です。
そもそも日本語のような自然言語は、正確な論理の記述には向いていません。
それを無理やり論理的にやろうとすれば、色々なローカルルールが発生し、もはや国語ではなくなるでしょう。

例えば、第1段落の主張が文章全体の結論に含まれれないような文章があったとします。
このとき、第1段落の主張を「本文に即している」と見なすのか否か、という問題があります。
この判断について世間一般では特にルールは無いでしょう。
ある人は見なさないと言うし、また別の人は見なすと言うでしょう。

ところがテストでは「即していると見なす」を正答とするものが多いです。
これは選択問題で難解な出題をしようとするあまり「消去法でしか解けない問題」を作りがちになるからです。

つまり「否定要素が無ければ正解として残す」という「解法のテクニック」が正解の理由です。
もちろん、こうした判断の基準は受験国語だけに通用するローカルルールです。

これは論理であるかのように見せかけているだけで、国語力や論理力と関係ないでしょう。
特定のゲームにだけ通用する単なるボス攻略です。

世間でこんな主張をしたら、屁理屈と言われます。
時に屁理屈は社会的な混乱を招きますので、ローカルルールはむしろ弊害とさえ言えます。

このように実際の入試問題は、世間の常識から離れたローカルルールに支えられています。

ところで、論理的な思考の記述には、日本語よりももっと適した方法があります。

数式や論理記号、プログラミング言語などです。
こうした、より形式的な言語(フォーマルメソッド)を使うべきでしょう。

私の感覚では、高校受験の問題で、すでに論理国語の難易度は上限に達しています。
それ以上に難解な論理構造を記述したいのであれば、自然言語ではなく、もっと形式的な言語を使うべきです。

論理国語のやりすぎには要注意だと思います。
論理国語で学生を消耗させている間に、また日本が衰退してしまいます。

芸術も大切です

コンピューターを使った環境として、最近はVRやメタバースが注目されています。
もちろん、マインクラフトも。
これらはみんな

「3Dのバーチャル空間で時を過ごす」

という特徴があります。

ファイナルファンタジーやフォートナイト。
こうした人気のゲームも、みんなバーチャル空間の中で遊びますよね。

これからは多くの人が3D空間で過ごすのが当たり前になります。
すると、その中で表現する絵やマークなども3Dにする必要があります。

コンピューターで絵を描くことをCGと呼びますが、これからは3DのCGを普通に描ける必要が、きっと出てくるでしょう。

それでは、コンピューターで3Dの絵を描く方法。
皆さんはご存じですか?

きっと、ほとんどの人が想像もできないと思います。

残念ながら、まだ小学校の図画工作や中学校の美術では習わないからです。
指導要領には無いため、教えられる先生が学校にはほとんどいません。

しかし時代の方が先に進みます。
自分で少しずつ調べて、簡単なものを描けるようにしておくと良いでしょう。

そして、3DのCGを描くためのフリーソフトが存在します。

Blender

おすすめは Blender というソフトです。

公式ホームページ(https://www.blender.org/)からダウンロードすることができます。

無料ですが、高機能でプロも使っています。
このソフトでアニメ映画も作られています。

WindowsでもMacでもLinuxでも動きます。
しかも、Pythonで自動化もできます。

無料で使おうと思ったら、ほぼこれ一択でしょう。

もしも新学期が始まるまで、すこし暇を持て余しているなら、挑戦してみてはいかがでしょうか。

充実した新生活を!

何はともあれ、受験お疲れさまでした。

羽を伸ばして体を休め、新学期に向けて今は十分に養生してくださいませ。

新年度はきっとステキな生活になるでしょう。
そうなるように祈っております。

そうそう、言い忘れていました。

卒業おめでとう!

いつでも教室へ遊びにおいで。

 


進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたります。生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校

私立高校

中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

ついに大学全入!偏差値よりもコンピュータースキル!

入試が中止になって全員合格

塾長です。

大学の定員割れが止まりません。
愛知県では公立高校の定員割れが続いていますが、大学は逆です。

私立大学から定員割れが起こり、地方の公立大学へ広がっていきます。
しかもその状況は、高校よりもずっと激しいです。

昨年とうとう私立大学の全体の定員に対して、入学者数が下回ってしまいました。
なんと私大の半数が定員割れです。

定員割れしている中には、あの有名な大学もあります・・・

ソースはこちら。

大学の定員割れが止まらない

私大ほぼ半数が定員割れ、経営難の恐れも…今春「充足率」初めて100%下回る
2021年09月28日 19時14分 読売新聞 @niftyニュース
https://news.nifty.com/topics/yomiuri/210928507383/

私立大学の今春の入学定員充足率が全体で初めて100%を下回ったことが28日、日本私立学校振興・共済事業団の調査でわかった。

100%を切ったのは、調査開始以降の23年間で初めて。

こんな記事もあります。

都内私大の3割以上が「定員割れ」の衝撃 早慶上理・MARCHの入試難易度は今後どうなる?
9/29(水) 17:40 Yahoo!ニュース
https://news.yahoo.co.jp/articles/f2ce983333b67acd998130591b082cfe4cca581c?page=1

大学入試は入試ではなくなる

私大が定員割れしてしまうと、いったい何が起こるのでしょうか?

学生が集まらなければ、大学は経営ができません。
学生を集めることが、まず第一の仕事です。

そう考えれば、これから起こることは自明です。

大学入試が簡単になります。いや、もうなってます。

そもそも入学試験が機能しません。
選別できるほど、受験者が集まらないのですから。

「ぜひ、うちの大学へ来てください」

むしろ学生の取り合いです。

学生は自分に合う大学を求めます。
大学は環境の良さをアピールします。

入試は「試験」ではなく「お見合い」になります。

専門学校の人気が上昇し、さらに厳しい

日本では若い世代の所得が低迷しており、大学の学費は大きな負担です。

こういう時代は、堅実な考え方をする人が増えます。
つまり、ただ「学歴」を買うために大学へ進学する人は減ります。
代わりに国家資格が取れたり、専門技術が身につくような進学が好まれます。

そのため、専門学校や、資格系の学部のある大学や人気となります。

しかし少子化で学生の数には限りがあります。
専門学校と大学の間で学生の取り合いになるでしょう。

つまり大学の定員割れは、少子化だけが原因ではありません。
専門学校の人気も反映して、さらに加速していくだろうと思います。

偏差値を上げる労力を何に回すべきか?

もちろん、大学でやっていけるだけの基礎学力は必要です。

あたり前の話ですが、本来、学力と大学の定員とは関係のない話しです。

しかし日本の受験システムは、学力のレベルを競争原理で担保しようという考え方で長らくやってきました。
そのため「競争倍率が高い」と「学力が高い」を同一にしてしまう短絡思考が蔓延しています。
大雑把には成り立つ考え方ですが、これが少子化で通用しなくなりました。

何はともあれ、競争が無くなったことにより、受験で不要になる能力とは、

偏差値競争で勝つためのクイズ王的な能力

です。
これが受験では不要になっていきます。

つまり、

  • 大学らしい研究ができる基礎学力 → 相変わらず必要
  • 入試で定員に入るための即答力 → もう不要

こんな感じです。

例えば、得意科目で偏差値60くらいが基礎学力だとしましょう。

「基礎」のレベルが高すぎますか?
しかし、大学は自分の好きな科目、得意な分野を志望する人が多いでしょうから、そう考えれば偏差値60くらいでも普通なんじゃないかと思います。
しかしのしかし、だからと言って、これは全く悲観することにはなりません。

半数の大学が定員割れならば「総合で」最終的に偏差値50もあれば過半数の大学へ合格できます。
ということは、得意科目が60あれば、得意でない科目は平均点未満でもぜんぜんOKということです。

どんぶり勘定かもしれませんが、話を簡単にするために、そんな想定としましょう。

そして大切なことは、

得意科目の偏差値60を、無理くり70まで上げる必要は、もうないということです。
逆に、不得意科目を、無理くり克服する必要は、もうないということです。

それでは、

  • 偏差値60を70にする分の労力
  • 苦手科目で消耗していた分の労力

これらは、どこに傾けたらよいでしょう?

そういう話になります。

コンピューターの使い方を学ぼう!

偏差値70の人が、クイズに答えて「スゲー」とか言われています。

塾長は思います。

そんなの、ググればすぐに答えが分かる話じゃん・・・

3桁の掛け算を暗算でやってのける人が「スゲー」とか言われています。

塾長は思います。

そんなの、電卓で良いじゃん・・・

どちらもスマホ1台で解決できます。

しかも社会に出てから、クイズや計算問題みたいな出題なんてありません。
0.1秒でも知識を早く答えられるような問題解決なんて、最初から発生しません。
計算結果を1問ずつ聞かれるようなことはなく、1000回とか10万回とかの計算について結果が問われるのが普通です。

つまりコンピューターを使えば、偏差値70の人にも簡単に勝てるでしょう。

偏差値を60から70にしている暇があったら、
さっさとコンピューターを学べ!

そういう価値観に頭を変えておかないと、10年後に泣きを見ることになります。

人工知能に職を奪われる!

極端に言えば、まぁ、そういう話です。

人工知能を「使う側の人間」に、早くなっておきましょう。

遅い・ミス・苦手はコンピューターで克服せよ!

漢字が苦手でも、パソコンで打てればOKです。
世の中の多くの大人たちが、漢字が苦手でも仕事に困ることは、ほとんどありません。

英単語のスペルミスが多くても、パソコンが自動的に指摘してくれます。
計算ミスが多くても、パソコンにやらせれば間違えません。

正確に、大量に、暗記する・・・
正確に、速く、処理する・・・

学校で、テストで、入試で、あれほど要求されてきたスキルです。

しかし、多くの人が苦手なはずです。
家族の電話番号ですら、みんな覚えていません。

人間は機械じゃないですから。
それを機械のように正確に速くできるようにする訓練。
それが偏差値競争。

しかし、機械が得意なことは、生身の人間では勝てません。
最初からコンピューターの方が得意です。

だったら、コンピューターを使いこなせた方が、手っ取り早く偏差値70の人に勝てます。

コンピューターの性能が低かった時代
コンピューターが高価だった時代
コンピューターが大きくて重かった時代

そういう時代に人に求められてきた能力です。
もう、無理やり身に着ける必要はないですよ。

安価なコンピューターでも偏差値70の生身の人間よりも、

速く、正確に、大量に、文句も言わず、休むこともなく、

暗記や計算をやってくれます。

コンピューターを使った方が早いです。

すでに偏差値70の人はどうすべきか?

意外かもしれませんが、偏差値80を目指すのもアリです。
得意なのですから、さらに伸ばせばよいのです。

むしろ好きで没頭していれば、勝手に偏差値が上がるかもしれません。

何の問題もないです。
人から何か言われる筋合いもないでしょう。

さらに言えば、

なんか知らないけれど、好きでやってたら結果が後から着いてきた・・・

こういう人は無双状態です。
誰も勝てません(そもそも勝負してませんが)。

話を戻しますが、

実はコンピューターが発達しても、

人に聞いた方が早い!

という場面がいくつもあります。
生き字引みたいな人が近くにいると、とても助かることが多いです。

ただし、生き字引の代わりになるような便利なアプリが必ずいつかは出て来ます。

偏差値の高い人をモデルにアプリを作る場合もあります。
あるいは自分の思考過程をアプリにしてしまう人もいます。

ということで、

その鍛えた頭で、コンピューターを学びましょう。
きっと爆速でマスターできます。
爆速でコンピューターを使いこなし、問題解決に取り組んでいきましょう。

あるいは

「コンピューターが苦手そうなこと」

これに努力を傾けてもよいでしょう。

まとめ

受験競争は緩くなっていきます。
人によっては、もうすでに無くなったと感じるでしょう。

そのため、受験のために苦手な科目をガマンして克服する必要がなくなってきました。
好きなことや得意なことを伸ばすことに、もっと集中できるようになります。

苦手なことで消耗していた労力を、これからはコンピューターを使うことに回した方が良いでしょう。
速く、正確に、たくさん・・・こういう種類の問題は、できるだけコンピューターに任せた方が人間らしい生活を送れます。

何はともあれ、本当にやりたかったことに、もっと時間と労力を傾けたら良いではありませんか。

やりたいように、やったらよろしいと思います。

 

以上

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

【中3理科】遺伝の規則性をプログラミングで学ぼう

中3理科「遺伝の規則性」とプログラミング

塾長です。

テスト期間に突入しました。

みなさん、テスト対策は万全ですか?
学校からのプリントや宿題も増える頃ですよね?

そんな中、とある中3生。

「なかなか解けない!」

と悩んでいました。
「遺伝の規則性」・・・学校から出された理科の課題だそうです。

遺伝の組み合わせの全パターンを、もれなく書き出して数える・・・見るからに大変そう。

さて、皆さんは、こんな時どうしますか?

めんどうな事はコンピューターにやらせる!

ということで、本日のタイトルが答えです。

そう、コンピューターの出番です。
サックっとプログラミングした方が早いです。

プログラミングは多少の練習が必要です。
しかし慣れてしまうと、色々な作業が楽になります。

最初の1回目の作業は、規則性を理解するため、自分が成長するために必要です。
しかし、2回も3回も同じ苦労をするのが良いとは限りません。

2回目、3回目について、

全く同じ苦労をしますか?
何か工夫をして効率を上げますか?

こういうときの瞬間、瞬間の工夫の積み重ねで、人生が大きく変わっていくように思います。

その工夫のためには、プログラミングは必須アイテムと言えましょう。

それでは、コンピューターにやってもらいましょう。

遺伝の規則性についての例題

その前に、まず今回の問題について説明します。

中3理科の遺伝です。エンドウ豆の種子が「丸い」のか「しわ」なのか、という問題。
毎年の恒例です。

「丸い」種子をつける純系のエンドウ豆があります。
「しわ」の種子をつける純系のエンドウ豆があります。
それぞれから1株ずつ対応させて交配させると、子の世代の種子はどのような形状になるでしょう?
丸い種子のエンドウ豆の株と、しわの種子のエンドウ豆の株の数を、簡単な整数比で示せ。
また「丸い」形質の遺伝子をAとし、「しわ」の形質の遺伝子を「a」として、そうなる理由を説明せよ。

このように遺伝の問題は、組み合わせの全パターンで考えて解くのでした。

エンドウ豆の遺伝 交配

中3数学で習う多項式の分配法則 (A+A)(a+a) = Aa+Aa+Aa+Aa に似ています。

そして回答の例はこんな感じです。

純系の「丸い」種子をつける親の体細胞の遺伝子を(A, A)、「しわ」のそれを( a, a )とする。

子の世代は(A, A)と( a, a )の掛け合わせが(A, a )(A, a )(A, a )(A, a )となる。ここでAは「顕性の形質」で、a は「潜性の形質」だから(A, a )は「丸い」種子となる(※)。よって、子の世代の種子は、全て「丸い」形状になる。

孫の世代は、子の(A, a )と(A, a )の掛け合わせが(A, A)(A, a )(A, a )( a, a )となるから、「丸い」:「しわ」が3:1の比率であらわれる。

(※)教科書改訂により古い用語の「優性」「劣性」は廃止され、「顕性」「潜性」に統一されました。

詳細は教科書を見てくださいませ。

やっとれん

これが「ひ孫の世代」以降になると厄介です。組み合わせが指数関数的に増えてしまい、調べるのが煩雑になります。
例えば、こんな問題です。

純系の「丸い」種子の株と「しわ」の種子の株を掛け合わせて子の世代をつくる。
その子の世代どうしを掛け合わせて、孫の世代をつくる。
その上で、次の各問いに答えなさい。

(問1)孫の世代を互いに掛け合わせたとき、次の世代の「丸い」:「しわ」の比はどうなるか?
(問2)孫の世代の中から「丸い」種子の株だけを選んで、互いに掛け合わせたとき、次の世代の「丸い」:「しわ」の比はどうなるか?

こんな問題が出たら、やってられません。
他の問題をやる時間が無くなってしまいます。飛ばしてください。
出るのが明白なら、事前に答えを丸暗記して流しましょう(出ないと思いますが)。

コンピューターにやってもらいました

しかしコンピューターなら、あっという間です。
親の世代から、上の問1と問2にある「ひ孫の世代」まで、コンピューターに聞きました。

実行結果

エンドウ豆の遺伝についてパイソンのプログラムで組み合わせを計算させた結果

問1の方は、孫の世代も、ひ孫の世代も、「丸い」種子の株と「しわ」の種子の株の比率は同じでした。
ガチで数えると64通りの組み合わせですが、同じものをまとめていくと3:1になりました。
つまり何も操作をしなければ、エンドウ豆は「丸い」:「しわ」=3:1の出現比率に落ち着くと言えます。

問2の方は「丸い」種子だけを選択する操作をした場合です。当然ですが、次の世代で「しわ」の割合が減ります。
なんと8:1になりました。

何世代目で純系になる?

ちなみに、さらに「丸い」株だけを選択して次の世代「玄孫(やしゃご)」を生むと、15:1になります。
さらに「丸い」株だけを選択して次の世代・・・と繰り返していくと、いつかは「丸い」種子の株だけになるというワケです。

こうして純系の株が作られていくワケですね。すると

何世代の後に「丸い」の純系を得られるか?

が気にってきます。確率ですから「しわ」を完全に0にすることは難しいので、ここでは仮に「純系」の基準を

「しわ」の出る確率が1万分の1以下

としましょう。
そこで、この基準を満たすまで世代交代を繰り返す実験をやってみました。
もちろん、コンピューターの中で・・・。

エンドウ豆の遺伝シミュレーション 純系

ということで、第100世代目で「ほぼ純系」の子孫ができました。

狙ったワケではありませんが、ちょうど100でした。

シミュレーションですから、交配の全パターンを計算しています。
結果が出るのに4時間くらいかかりました。
メモリは20ギガくらい使いましたが、塾長のパソコンは16ギガしか積んでいなかったのでメモリ不足になり、途中から計算が遅くなりました。

確率漸化式をつくって計算すれば、もっと早く回数を求められるとは思いますが、それでは高校数学の話になってしまいます。
今回は、あくまでも「中3理科の遺伝の実験」としてプログラミングしました。

ただ今回は(A, a )と(a, A )を別のものとして処理しました。
これらを一緒と見なすプログラムを追加すれば、組み合わせの数を何割か減らせたので、もう少し高速にシミュレーションできたかもしれません。

何はともあれ、やってみた感想は・・・

そもそも、純系の株を作るのが、ものすごく大変だ!

ということでした。

シミュレーションではなく、これが本当にエンドウ豆を交配していくことを考えてみてください。
成長を待って、種を採取し、分類し、また植えて、花が咲く前におしべを切り・・・ということを延々と続けていくわけです。

1000株育てて100株に選定などとすれば、もっと早く純系を得られるとは思いますが、それでも大変でしょう。

実験は準備が9割と言われますが、むしろ99%くらいに感じます。

これが今日の結論と言っても良いでしょう。

作業が大変なのか、理科として難しいのか?

組み合わせのパターンを全て考える。
組み合わせの組み合わせを全て考える。
組み合わせの組み合わせの、そのまた組み合わせを全て考える。

どんどん煩雑になって、数え上げるのに苦労します
解けない理由が、理科として難しいからではありません。

「作業がたいへん!」

という意味で難しい。

リアル世界の実験では、乗り越えなければいけない困難でしょう。

しかし学校の勉強やテストとなれば話は別です。

例えば、制限時間の厳しいテストや入試が、このような作業量を手早くこなせるか否かで合否が決まるものであったら、ちょっと意味不明です。
教科を分ける意味がほとんどありません。

機械が無かった時代は「機械みたいな人間」が重宝されたかもしれませんが、今はスマホでさえ高速に処理できます。

大変と思う時こそ、コンピューターの使い方お教えるべきなんです。
時には根性論も大切ですが、それだけは良くありません。
もっと積極的にコンピューターを活用すべきだと思います。

あらゆる勉強にコンピューターを活用!

遺伝の組み合わせを計算させるプログラムをつくる過程で、遺伝の性質を深く理解できるでしょう。

手作業で組み合わせを書き出すのも無駄ではありませんが、それが大変過ぎる作業では、先に心が折れてしまいます。
それに作業の制約が勉強の制約になってしまうと、むしろ視野が狭くなります。

コンピューターの計算は、失敗してもやり直しが楽です。
何度もチャレンジできるし、視野も広がるでしょう。

また多様なメディアを扱えるというメリットもあります。
子供たち自身でコンテンツを作ることもできます。

数学や理科、技術だけで活用というのでは寂しいです。
美術、音楽、体育、社会、英語・・・あらゆる科目で使いこなすことができます。

今回は理科の勉強にコンピューターを活用する例を考えました。

コンピューターを活用するセンス

これを子供たちに身に着けてもらうことが大切です。

そのためには、あらゆる学びの場でコンピューターを活用しましょう。

たとえば今回のように、「ワーク」にあたる作業訓練的な学びの部分には、コンピューターを活用できるところが多くあるはずです。

速く、正確に、たくさん・・・

このような意味で能力を伸ばすような訓練系の学習時間は、今後、見直されていくべきでしょう。
今後は、コンピューターを活用した試行錯誤の時間に置き換わっていくべきだと思います。

このような視点に立つと、日本の教育は世界から遅れています。
創造性やイノベーション力が足りないと、今でも言われています。

少ない知識をトリッキーに組み合わせて「速く、正確に、たくさん」できるような訓練ばかりして、消耗しているからです。

そういう作業こそ、コンピューターにやらせるのです。
それが当たり前の時代です。

やらなければ、日本が沈没します。

パイソンでプログラミング

今回のプログラムは次の通りです。

パイソンのバージョンは3.9以降です。
最大公約数を求める関数 math.gcd() に3つ以上の引数を渡せるのが、そのバージョン以降だからです。

データ構造としては、タプル、配列、辞書を理解しておく必要があります。

パイソンはタプルを辞書のキーとして使えることを利用しています。
また、パイソンは配列やタプルに自然数をかけると、それらを複製できることも利用しています。
(A, A)×3 → [(A, A),(A, A),(A, A)]
これらの機能は他のプログラミング言語でも使えるとは限らないので要注意です。

なお、純系を何世代目で得られるかを求めるプログラムの部分は省略してあります。
興味のある人は考えてみてください。

エンドウ豆の遺伝 Pythonプログラム

現場からは以上です!

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

2次関数の虚数解をパイソンのグラフで見える化してみた

塾長です。

今回は高校生からよく出る質問、というか疑問

虚数 $ i = \sqrt{-1} $ は実在しない数なのか?

について考えてみます。

2次方程式と2次関数のおさらい

解の公式

まず中学3年生が1学期で習う「2次方程式の解の公式」を思い出してみましょう。

2次方程式$ ax^2+bx+c=0 $の解の公式

$$ x = \frac{ -b \pm \sqrt{b^2-4ac} }{ 2a } $$

判別式

高校1年生になると、さらに「判別式」を習います。
1学期の後半または2学期の初めくらいです。

実数$x$について、2次方程式$ ax^2+bx+c=0 $の判別式をDとすると、

  • $D < 0$ のとき、解は0個(解なし)
  • $D = 0$ のとき、解は1個(重解)
  • $D > 0$ のとき、解は2個

続いて、2次関数$ y=ax^2+bx+c $のグラフと判別式Dとの関係について習います。

2次方程式$ ax^2+bx+c=0 $の解を、次の連立方程式の解とします。

$$ \begin{cases}
y=ax^2+bx+c \\
y=0
\end{cases} $$

$x-y$平面上で2式それぞれのグラフを描くと、その交点が解になっているのでした。
つまり、

2次方程式$ ax^2+bx+c=0 $の判別式をDとする。
$ y=ax^2+bx+c $と$x$軸との共有点は、

  • $D < 0$ のとき、0個
  • $D = 0$ のとき、1個(接する)
  • $D > 0$ のとき、2個(交わる)

この様子を直感的なグラフで表すと、次のようになります。

複素数

高校2年生では、虚数単位 $ i = \sqrt{-1} $ を導入して、$x$を実数から複素数へ拡張します。
すると方程式の解を必ず求めることができるようになります。

2次方程式$ ax^2+bx+c=0 $の判別式をDとすると、

  • $D < 0$ のとき、解は複素数で2個
  • $D = 0$ のとき、解は実数で1個(重解)
  • $D > 0$ のとき、解は実数で2個

であり、どの場合でも解は、

$$ x = \frac{ -b \pm \sqrt{b^2-4ac} }{ 2a } $$

と表すことができる。
特に$D < 0$ のときは$ i = \sqrt{-1} $ として、

$$ x = \frac{ -b \pm \sqrt{|D|} i }{ 2a } $$

である。

ざっと、ここまでが中3、高1、高2の二次方程式と二次関数のおさらいです。

複素数の世界では必ず共有点がある?

素朴な疑問

さて、ここで塾長は、ふと疑問に思いました・・・

せっかく複素数まで拡張して、判別式$D<0$の場合でも解が求まるようになったのに、対応するグラフの共有点が無いままって、寂しくない?

寂しいですよね!?

疑問です。というか、不満です。
なんとかして、このモヤモヤを解消する必要があります。

問題解決というヤツです。

仮説を立ててみる

そこで、

もしかしたら、グラフを複素数まで拡張すれば、共有点が2つに見えるのではないか?

という仮説を立ててみました。

本当にそうなるのでしょうか?

コンピューターの力を借りて、そのグラフを描くことにチャレンジすることにしました。

仮説を立てて確かめるってヤツです。

4次元のグラフは描けない!!

コンピューターは具体的な数値しか扱うことができません。
そこで今回は、つぎの関数を例に、グラフを描いてみることにします。

$$y=x^2-2x+2 $$

もちろん、これの判別式Dは負です。

$$D=(-2)^2 – 4 \times 1 \times 2 = 4-8 = -4 < 0$$

そして方程式$x^2-2x+2=0$の解は

$$x=1 \pm i$$

という虚数解です。

今回の目的

今回の目的を次のように設定します。

xを複素数としたときに、
$$ \begin{cases}
y=x^2-2x+2 \\
y=0
\end{cases} $$
の共有点が2つあることをグラフで示す!

実数と複素数で何がどう変わる?

高校1年生までは、$x$も$y$も実数ですから、これは、

実数$x$ を与えると、実数$y$ が1つに定まる関数のグラフ
つまり、
数直線上の1つの実数$x$を、また別の数直線上の1つの実数$y$へ移し変える関数のグラフ

ということになります。
つまり「2本の数直線」があれば、話ができます。
よって、

$x$ が実数ならば、
$y=x^2-2x+2 $ のグラフは、x軸とy軸で構成される「平面(2次元空間)」の上に描くことができる

ということです。
直線は「1次元」ですから、2本の直線で表現できる空間は、せいぜい「2次元空間」となります。

さて、

ここで$x$を複素数に拡張します。
そこで2つの実数$a,b$を使って$x=a+bi$としましょう。

$$ \begin{cases}
y=x^2-2x+2 \\
x=a+bi \\
i = \sqrt{-1}
\end{cases} $$

すると、式の計算結果$y$も複素数になります。
そこで2つの実数$c,d$を使って$y=c+di$としましょう。
すると、これは、

複素数$x=a+bi$ を与えると、複素数$y=c+di$ が1つに定まる関数のグラフ
つまり、
実数平面上の座標$(a,b)$を別の実数平面上の座標$(c,d)$に移し変える関数のグラフ

ということになります。
つまり「2つの平面」があれば、話ができます。
よって、

$x$ が複素数ならば、
$y=x^2-2x+2 $ のグラフは、平面a-bと平面c-dで構成される「4次元空間」の中で描くことができる

ということです。
平面は「2次元」ですから、2つの平面で表現できる空間は、せいぜい「4次元空間」となります。

拡張し過ぎた

上の考察から、コンピューターで「4次元のグラフ」を描けば、今回はミッションクリアできそうです。

・・・ん?

無理です!

私たちはどんなに精神を研ぎ澄ませても、3次元までしか空間の広がりを認識することができません。
ましてやグラフを描くことも見ることもできません。

これはコンピューターでも表示できません。

(計算だけならできます。表示が無理ということです)

グラフを3次元にまとめる!

ということで、何とかして3次元で済ませる方法を考えなければいけません。

グラフを3次元で描けるようにする

という「課題」が生まれてしまいました。

どうしたらよいでしょうか?

【豆知識】
問題解決の世界では、最終的に解決する「目的」のことを「問題」と呼びます。
そして、問題を解決する過程(途中)で乗り越えるべき「目標」のことを「課題」と呼びます。

そもそも何がしたかったのか?

道に迷ったら、目的の再確認です。

目的さえ達成すればよいのです。
もしかしたら「やらなくても良いこと」で悩んでいたりするかもしれません。

今回は、$y=x^2-2x+2 $ と $y=0 $ の共有点が2つあることをグラフで描きたかったのでした。

あ、な~るほど!

次元を減らす

目的の式をじーっと眺めていたら、思いつきました。

$ y=0 $なのですから、$y$の方は2次元も必要ありませんね。

だって0(ゼロ)の時だけ考えればよいのですから。そこで、

yの次元を2次元から1次元に減らす!

ことを考えましょう。

グラフ表示の方針

ということで、グラフに表示する方針をまとめましょう。

実数の世界のグラフは、横軸がx軸、縦軸がy軸です。

今回は$x$を複素数$a+bi$へ拡張したのですから、そのグラフは、

  • $x軸$を複素平面$a+bi$へ拡張(平面:2次元)
  • $y軸$も複素平面$c+di$へ拡張(平面:2次元)

としたかったのですが、無理でした。
これではグラフの座標が (a,b,c,d) の4次元になってしまい、描けないからです。
そこで次の方針としたのでした。

  • $x軸$を複素平面$a+bi$へ拡張(平面:2次元)
  • $y軸$は1次元に落とした値(直線:1次元)

つまり、

  • 横軸だったx軸は、横に広がる複素平面に拡張
  • 縦軸だったy軸は、実数の数直線のまま

これなら3次元の立体的なグラフで表すことができます。

あとは、縦軸のyをどのような値に決めるか、ですね!

案1:yの実数だけを縦軸にとる → 失敗!

そもそもグラフは実数しか描けません。
そのため、1つの複素数を2つの実数の組に対応させ、それを平面上に表すのでした。

であるならば、安直ではありますが、yの実部だけをグラフに採用すればよいかもしれません。

  • 横軸:複素数$ x=a+bi $(平面:2次元)
  • 縦軸:$y=c+di $の実部$c$(直線:1次元)

それでは、この案でグラフを描いてみましょう。
こうなりました。

馬の鞍みたいな形のグラフになりました。
最後の考察で、このグラフも少し使いますから、とりあえず「馬の鞍型」のグラフとでも呼んでおきましょう。

ちなみに、赤い線が、実数の$x-y$平面上のグラフ(平面 $ b=0 $ で切った切り口)です。

さて、これで目的は果たせたでしょうか・・・?

うーん、何だかよく分かりません。

$x$を複素数に拡張したおかげで、確かに平面$y=0$との共有点は存在しそうです。
しかし「共有点が2つ」である様子が、これでは分かりません。

よく考えてみたら、これはダメです。

もしも4次元のグラフが描けるとすれば、本来のグラフは、

(a,b,c,d) の4次元でグラフを描き、それを平面$c=0$でカットした切り口が、求める3次元のグラフ

が本当のグラフです(※)。
4次元のグラフは描けませんが、本来はそんな感じです。

そう考えると、無条件に$y$の虚部を捨ててしまったのがダメでした。

(※)【豆知識】
4次元の立体を平面で切ると、その切り口が3次元の立体になります。
私たちの世界は3次元です。私たちの世界で立体は3次元です。
例えば、スイカを包丁で切った時の断面を想像してみてください。
スイカは3次元の球です。それを2次元の平面でスパッと切ると、切り口が2次元の円になります。
4次元の世界は、私たちの世界よりも1つ次元が上ですから、上の考察をすべて1つずつランクアップして考えます。
つまり、4次元の中で球体を切ると、切り口が3次元の球になります。

案2:yの絶対値を縦軸にとる → 成功!

そこで、数学的に条件を壊さないことを考えます。

$y=c+di=0$

すなわち、

$c=0$かつ$d=0$の場合

を考えたグラフであれば目的を達成できるわけです。

ところで、

$|y|=0$も同様に$c=0$かつ$d=0$です。

ですから縦軸を$|y|$とすれば、これは実数ですから、うまく1次元に収まります。

  • 横軸:複素数$ x=a+bi $(平面:2次元)
  • 縦軸:$|y|$すなわち$\sqrt{c^2+d^2} $(直線:1次元)

それでは、この案でグラフを描いてみましょう。
こうなりました。

うまくいきました!

グラフの2カ所が尖っていて、2つの虚数解

$$x=1 \pm i$$

の所で平面$y=0$に突き刺さっていそうです。
共有点は「2だけ」ですから、平面$y=0$上で、それぞれ1点ずつ、チョン、チョンと、くっ付いているはずです。

グラフの解像度の問題で「点」まで鋭利に描き切れていません。
念のため、100倍に拡大してみましょう。

$x=1 + i$の付近を100倍に拡大してあります。
この倍率で$x=1 – i$も同時に描くのは不可能なので、1つだけで確認します。

どうです?

共有点の1つ$x=1 + i$の位置へ、グラフが突き刺さっている感じがしますよね。
このグラフを1000倍にしても、10000倍にしても、ずっとこんなグラフになります。

「1点に突き刺さ差っている!」

のですから、倍率をどこまで上げても、こんな感じです。
もちろん、$x=1 – i$ についても同様です。

これで本当に

「たった2点」だけの共有点を持つ!

ことが、グラフで表示できたのではないかと思います。

思ったより大変でした。

教えてエライ人!

上のような考察をFacebookにアップしていたら、色々な人からご意見をいただきました。
なかでも吉田先生には色々と教えていただきました。

ということで、今回のエライ人は、吉田信夫先生です!

吉田先生はあの「大学への数学」で原稿を書かれていた先生の内の1人です。
超すごくないっすか!

先生のブログ「yoshidanobuo’s diaryー高校数学の“思考・判断・表現力”を磨こう!」はこちらです。

グラフで虚数解を見える化するにあたり、いろいろとご指導をいただきました。
また数学的におかしな用語の使い方についてもご指摘いただき、修正することができました。

用語の誤用

今回やってしまった用語の誤用を2つ紹介します。

どこが間違っているのか、考えてみてください。

  • 誤用1:「$y=x^2-2x+2$の判別式の値は負です。」
  • 誤用2:「複素数$x=a+bi$と実数$y$において、$y=|x^2-2x+2|$のグラフ(a,b,y)は、平面$y=0$と2点で接しています。」

わかりますか?

私は吉田先生に指摘されるまで気づかなかったです。まさに

「それは違反です」

という感じで、用とあいなりました。

大学入試の2次試験で記述回答を予定している人は、気を付けてくださいね。

さて、上のものは次の点で間違っていました。

  • 誤用1:関数に対して判別式を語ったところがアウト。判別式は方程式「$0=x^2-2x+2$」に対して定義されるもの。
  • 誤用2:「接する」は「微分可能な領域」で定義されるもの。今回は尖っていて微分不可(微分する向きによって微分係数が異なる)。

さぁ、どうでしたか?

滑らかに「接する」グラフにする

さらに誤用2に関連して、グラフが2つの$x=1 \pm i$で「接する」ようなyの取り方も教えていただきました。

みなさん、分かります?

  • 横軸:複素数$ x=a+bi $(平面:2次元)
  • 縦軸:$|y|^2$すなわち$ c^2+d^2 $(直線:1次元)

それでは、この案でグラフを描いてみましょう。
こうなりました。

yの値が2乗されているので、グラフが大きくなりすぎて「2点」どころではなくなってしまいました。
そこで例によって、$x=1 + i$の付近を100倍に拡大してみましょう。

おお、本当に滑らかに接してそうですね!

例によって「1点」で接しているので、このグラフを1000倍にしても、10000倍にしても、ずっとこんなグラフになります。

次元を減らすもう1つの方法

さらにさらに、吉田先生からもう1つのグラフ表示の方法を教えていただきました。
$x=a+bi$ としたときに$y=0$を満たすような

$y=0$ を (a,b) だけで描く!

です。

つまり、(a,b)に色々な実数を当てはめて $x=a+bi$ を動かしたときに、$y$ がどのように動くかを図示します。
もう少し正確に言うと、$y=0$ を満たすような「yの実部」と「yの虚部」をそれぞれ平面(a,b)上に図示します。

$y$ の値もまた (a,b) の関係式として表現されるため、グラフの次元は(a,b)の2次元だけで済みます。
1つの複素平面だけで示すやり方です。

やってみましょう。まず、

$$ \begin{cases}
y=x^2-2x+2 \\
x=a+bi \\
y=c+di
\end{cases} $$

について、

$x=a+bi$ を $y=x^2-2x+2$ に代入して整理すれば、

$$ y=a^2-b^2-2a+2+2b(a-1)i $$

です。

$y=c+di=0$ すなわち $c=0$かつ$d=0$ の場合を考えるわけですから、

$$ \begin{cases}
a^2-b^2-2a+2=0 \\
かつ\\
2b(a-1)=0
\end{cases} $$

すなわち、

$$ \begin{cases}
b = \pm \sqrt{(a-1)^2+1} \\
かつ \\
a=1 または b=0
\end{cases} $$

です。
これらの交点が求める解になります。

あらためて、実部の$a$を$x$とし、虚部の$b$を$y$として、複素平面$x-y$にグラフを図示したのが下です。
これは吉田先生からいただいたグラフです(軸が$x-y$になっていますが、$a-b$に読み替えてください)。

$a^2-b^2-2a+2=0$のグラフが青で、$a=1$と$b=0$のグラフが赤です。

確かに複素平面の世界では、2点の共有点がありました。
そしてグラフの交点はそれぞれ、$ 1+i $ と $ 1-i $ です。

これは感動です!

考察とまとめ

もしも

$$ \begin{cases}
y=x^2-2x+2 \\
x=a+bi \\
y=c+di=0
\end{cases} $$

のグラフを4次元 $(a,b,c,d)$ の空間上に描けたとしましょう。

すると、上の吉田先生からいただいた平面グラフは、その4次元グラフを $y=0$ で切った切り口であるといえます。

やってみました。それが下のグラフです。

緑の実線が、実数の世界での2次関数のグラフです。
赤の実線と青の実線は、それぞれ上の平面グラフに対応しています。

このグラフをもとに、これまでの話を全て振り返ってみます。

まず青い曲面が、最初に描いた「馬の鞍型」のグラフです。
これは4次元グラフを平面 $ d=0 $ で切ったときにできる立体です。
そして、この青い曲面をさらにy=0で切ると、青い実線の双曲線になります。

次に、4次元グラフを平面 $ c=0 $ で切ったときにできる立体も考えます。
それが、上のグラフの赤い曲面です。
そして、その赤い曲面をさらにy=0で切ると、赤い実線の2直線になります。

そして青い双曲線と赤い直線の交点が、まさに $ 1 \pm i $ となっています。

これらの様子を総合すると、2次方程式の虚数解 $ 1 \pm i $ は、

  • 3次元空間 (a, b, c) の曲面(縦軸をyの実部としたグラフ)
  • 3次元空間 (a, b, d) の曲面(縦軸をyの虚部としたグラフ)
  • y=0の水平な平面

の3つを重ねた時にできる共有点

であることがグラフで確認できました。

グラフ表示に使ったPythonプログラム

今回、グラフを描くのにプログラミング言語の「パイソン(Python)」を使いました。
以下が、そのプログラムです。
Jupyterという環境を使いました。

ちなみに、パイソンのプログラミングを学ぶなら、無料で使える Google Colaboratory がオススメです。
もちろん下のプログラムも Google Colaboratory で動作します(動作確認済)。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
fig = plt.figure(figsize = (8, 8))

# Axes3D
ax = Axes3D(fig)

# タイトルを設定
ax.set_title(“$y=|x^2-2x+2|$”, size = 20)
#ax.set_title(“$ y = |x^2-2x+2|^2 *100 $”, size = 20)

# 軸ラベルを設定
ax.set_xlabel(“x-Real”, size = 14)
ax.set_ylabel(“x-Image”, size = 14)
ax.set_zlabel(“y”, size = 14)

# 表示角度の設定
ax.view_init(elev=10, azim=35)

# 座標のメッシュ
rr = np.linspace(-1.5, 3.5, 200)
ii = np.linspace(-1.5, 3.5, 200)
#rr = np.linspace(0.9, 1.1, 200)
#ii = np.linspace(0.9, 1.1, 200)
i0 = np.zeros(200)
r,i = np.meshgrid(rr, ii)
z = r + i*1j

# 曲線・曲面を描画
y0 = r*r-2*r+2
ax.plot_wireframe(rr, i0, y0, color = “red”)
y = np.abs( z*z-2*z+2 )
#y = ( np.abs( z*z-2*z+2 ) )**2 *100
ax.plot_surface(r, i, y, color = “yellow”, alpha=0.4)
plt.show()

あとがき

どの学年も文字式と関数の季節になりました。

今年から中学生は教科書改訂で「主体的な学び」が重視され、プログラミング教育も強化されました。
来年からは高校生でもそうなります。

そういう流れの中で、今回は、

高校生のレベルで数学を題材に「主体的な学び」を「プログラミング」も活用して行ったらどうなるか?

を実践してみました。

さらに今後の常識というか、新しい価値観である

「集合知」で「問題解決を加速する」という姿勢

も取り入れてみました。
ですから、問題解決の用語や流れも、それとなく意識してあります。

これが次世代型の教育であり、同時に、いま日本で遅れてしまっている教育でもあります。

今のところ私はそのように思っております。

教育者も間違えます。
先生が何でも知っていて間違いを起こさない聖人君子である、なんていう時代は終わっています。
そもそも非科学的で不合理です。

もう、1人の聖人君子や、優れたリーダー、1部の天才に問題の解決を任せるよな時代では、ありません。
というか、そんな人はいません。
幻想です。

今や、世界中の人たちがコンピューターでつながっているのです。
みんなが意見や知恵を出し合う「集合知」で、いち早く問題を解決していこう!
そのように考える方が大切です。

このような価値観でコンピューターを活用しながら問題解決を実践できる人。

それが、これから日本で、いや世界で多く必要とされる人たちなのだと思います。

現場からは以上です。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

夏休みの自由研究 かけ算とわり算の原理をプログラミング

塾長です。

いよいよ夏休みも後半です。

学生のキミたち、そろそろ読書感想文や自由研究に着手しましょう。

ということで、自由研究ネタを1つご提供します。

算数の研究です。

しかし、内容が深くてプログラミングもありますから、きっと中学生でも使えるでしょう。

算数や数学で「文章問題が苦手」という人には、特にチャレンジして欲しいです。

そもそも「かけ算」や「わり算」の意味とは?

もしも小学1年生や2年生から、次のように質問されたら、どのように答えますか?

  • 「かけ算」とは何ですか?
  • 「わり算」とは何ですか?

塾長は、次のように答えます。

  • 「かけ算」とは「たし算の繰り返し」です
  • 「わり算」とは「ひき算の繰り返し」です

なぜなら、

人類で初めて「かけ算」や「わり算」を発明した人は、きっと上のように考えたに違いない!

塾長は、そうに思うからです。

これをプログラミングで確かめていきたいと思います。

「たし算」で「かけ算」をプログラミングする

もしも「かけ算」が「たし算の繰り返し」なら、その通りに計算ができるはずです。
やってみましょう。

具体的な例から「かけ算」のパターンを考える

5×3の場合

例えば、5×3の計算を考えましょう。

5×3=5+5+5=「5を3個たす」=15(積)
ここで「たし算」の「+」記号は2個です。

つまり、

5を「3個」たすときは、たし算を「2回」使います。
たし算の回数は3-1=2回です。

7×6の場合

もう1つの例、7×6の計算ではどうでしょう。

7×6=7+7+7+7+7+7=「7を6個たす」=42(積)
ここで「たし算」の「+」記号は5個です。

つまり、

7を「6個」たすときは、たし算を「5回」使います。
たし算の回数は6-1=5回です。

「かける数」は「たした個数」

まとめます。

m×nの場合

一般化して、m×nの積を計算する方法を考えます。

上の2つの例から、これは「mをn個たす」です。
そして、たし算を使う回数は(n-1)回です。

つまり、

m×nとは、mに(nー1)回だけmをたし算すること

まとまりました。

スクラッチでプログラミング

それでは上のm×nの手順をプログラムにしてみましょう。

mにmをnー1回たす

これをプログラミングしたのが次です。

たし算でかけ算をプログラミングした図

  1. 「積」という変数を用意して、それにmを代入
  2. 「積にmをたす」という処理を(nー1)回くりかえす
  3. 「積」を表示

試しに、4×9でプログラムを実行しました。結果は36で正しいです。

つまり「たし算」を繰り返せば、確かに「かけ算」を計算できることが分かりました。

そしてこのプログラムは、どんな自然数どうしのかけ算でも計算できます。

プログラムのカイゼン

ところで、このプログラムは1つ分かりにくい所があります。

「×n」なのに、繰り返す回数が「n-1回」です。
「かける数」と「回数」が1つズレています。

これを同じにできれば、もっとプログラムが分かり易くなります。

そこで、こう考えたらどうでしょうか。

変更前: 最初に「積」という変数を用意して、それにmを代入します。
変更後: 最初に「積」という変数を用意して、それに0を代入します。

こうすれば、繰り返し回数もnになります。
つまりプログラムがこうなります。

プログラムがシンプルで見やすくなりました。

「かける数」は「0にたした回数」だった!?

プログラムを見やすくするために、上のように改善しました。

逆に、このプログラムが行っている処理を式で表すと、どうなるでしょうか。

例えば、7×6の場合に戻れば、こうなります。

変更前: 7×6=  7+7+7+7+7+7+7
変更後: 7×6=0+7+7+7+7+7+7+7

単に「かける数」と「たす回数」が同じになるように工夫しただけですが、実は、こうした方が数学的にも良いことが分かっています。

それは「かける数」を3、2、1、0と小さくしていけば分かります。
変更前の考え方では、

7×3=「7に7を2回たす」
7×2=「7に7を1回たす」
7×1=「7に7を0回たす」
7×0=「7に7を?回たす」

となってしまい、7×0を考えることができません。
一方、変更後の考え方ならば、

7×3=「0に7を3回たす」
7×2=「0に7を2回たす」
7×1=「0に7を1回たす」
7×0=「0に7を0回たす」

となりますから、ちゃんと7×0=0も計算できます。

ちなみに0という数も人類が「発明」した数なのだそうです。

「ひき算」で「わり算」をプログラミングする

たし算と同じように、わり算についても考えてみましょう。

もしも「わり算」が「ひき算の繰り返し」なら、その通りに計算ができるはずです。

やってみましょう。

具体的な例から計算のパターンを考える

9÷3の場合

例えば、9÷3の計算を考えましょう。

9÷3=「9の中に3がいくつあるか?」=「9-3-3-3=0だから9から3を3回ひけた」=3(商)
ここで「ひき算」の「-」記号は3個です。

つまり、

9から3を「3回」ひき算できたから、商は3です。

12÷5の場合

もう1つの例、12÷5の計算ではどうでしょう。

14÷5=「14の中に5はいくつ?」=14-5-5=2だから2回ひけて4あまった」=2(商)あまり4
ここで「ひき算」の「-」記号は2個です。
まだ4余っていますが、3回目の引き算まではできません。

つまり、

14から5を「2回」ひき算できて4余るから、商は2あまりは4です。

「商」とは「引くことができた回数」

まとめます。

m÷nの場合

一般化して、m÷nの商とあまりを計算する方法を考えます。

上の2つの例から、商は「mからnを引ける回数」です。
しかし、ひき算できる回数は、計算してみなければ分かりません。
1回引いてみて、まだ引けそうならもう1回引いてみて・・・という計算を繰り返します。

m-n=〇 もしも 〇>n ならば もう1回引ける・・・

という判断を繰り返してい良く計算です。
ですから、

わり算で商と余りを求めるとは、

m-n-n・・・-n=△ かつ 0≦△<n
k回引けたので商がk、余りが△

という処理をすること

まとまりました。

スクラッチでプログラミング

それでは上のm÷nの手順をプログラムにしてみましょう。
それが次です。

ひき算でわり算をプログラミングした例

  1. 商(引けた回数)を0回に設定、余り(引き算の残り)をmに設定
  2. 余り に 余り―n を代入し、商に1をたす(引いた回数を数える)
    これを 余り<n になるまで繰り返す
  3. 商と余りを表示

「あまり」は文字通り「余りもの」だった!?

上の処理からわかるように、余りは文字通りの余りでね。

mからnを何度もひき算して、もうこれ以上はひき算できない。
けれども中途半端に数が残っている。

それが余りです。

「わり算」を「お茶くみ」の手順で考えれば、商が小数でも解ける!?

ところで、これまで「わり算」の意味を

m÷n=「mの中にnがいくつあるか?」

としていました。
しかし、m÷mの意味は、もう1つあります。

m÷n=「mをn当分したら、1つあたりいくつになるか?」

これは、お茶くみの手順で考えれば、解くことができます。

mミリリットルのお茶をn個のコップに入れていくと、1人あたり何ミリリットル?

mミリリットルを全て急須にいれて、n個のコップを並べます。
急須から少しずつn個のコップへお茶を注いでいき、均等になるようにしますよね。

そして、急須の中の量が少なくなるにつれて、分配するお茶の量も少なくしていきますよね。
最後の1周は1滴ずつとか(そこまでやらないか)。

この手順をプログラムにすればよいのです。

  • まず、1ミリリットルずつ順番にn個のコップに入れていきます。
  • そして、余りが1×nミリリットル未満になったら、今度は0.1ミリリットルずつ入れていきます。
  • そして、余りが0.1×nミリリットル未満になったら、今度は0.01ミリリットルずつ入れていきます。
  • そして、余りが0.01×nミリリットル未満になったら、今度は0.001ミリリットルずつ入れていきます。

・・・これを繰り返していき、最後に1つのコップに入っているお茶の量が商になります。

このようにすると、商が小数になるようなわり算でも「ひき算」の繰り返しで計算できることが分かるでしょう。

プログラミングは、みなさんの宿題にしたいと思います。

たし算の記号「+」と、かけ算の記号「×」が似ている理由

上で見たように、かけ算はたし算で計算できます。

そう考えると、かけ算の記号「×」と、たし算の「+」が似ているのも納得ですよね。

「+」を少しだけ変えて「×」が作られています。
というか、角度を45度かたむけただけですね。

似ているどころか、形は何も変わっていません。

よく考えられていますね。

ひき算の記号「-」と、わり算の記号「÷」が似ている理由

わり算は、ひき算の繰り返しでしたから、

わり算の記号「÷」と、ひき算の「-」が似ているのも納得です。

ただ、形も変わっています。
真ん中の横線は共通ですが、それに上下の「・」マークが追加されています。

これは「わり算」=「分数」だからでしょう。

m÷n=$ \frac{n}{m} $

と書けることは、小学5年生の算数の単元「等しい分数」で習います。
分数の形をデフォルメすれば、正に「÷」というピクトグラムになりますね。

よく考えられています。

わり算のもう1つの記号「/」

ところで、エクセルやプログラミングの計算式では、わり算の記号を「/」で表しています。

たし算の記号「+」を傾けて、かけ算の記号を「×」としたように、
ひき算の記号「-」を傾けて、わり算の記号を「/」とした方が、統一感があります。

グーグル検索で調べてみると、海外の学校や教科書では、むしろ「/」を採用している方が普通のようです。

さらにコロン「:」を使っている国もあるそうですよ。
なるほど、その手もありますね。

これからコンピューターの利用が進んでくると、わざわざキーボードにない「÷」を使うのはめんどうですね。
もしかしたら日本も将来は「/」になるのかもしれません。

ちなみにプログラミング言語 Pythonでは、

  • m/n ・・・ m÷nの商(小数)
  • m//n ・・・ m÷nの商(整数)
  • m%n ・・・ m÷nの余り(整数)

という使い分けをしています。

コンピューターは「たし算」と「ひき算」しかできない!?

今から10年以上前に、塾長は趣味で望遠鏡を動かすプログラミングをしていました。

乾電池で動くような、とても小さなコンピューターを動かすプログラムでした。
このような小さなコンピューターは「マイコン」と呼ばれています。

マイコンにも色々ありますが、指先に載るような小さなものになると、使える命令がとても少ないです。

そのとき使っのは、PIC16Fなんちゃら、というマイコンでした。
それには四則計算の命令が「たし算」と「ひき算」の2つしかありませんでした。

「かけ算」と「わり算」が無いのです。

電卓を買ったら「×」と「÷」のボタンがなかった・・・というくらい衝撃でした。

「かけ算」や「わり算」が1回で計算できるコンピューターは高級品なのだと、そのとき知りました。
逆に、そのような高性能なコンピューターでも、中身は「たし算」と「ひき算」の組み合わせだけで作られているのだと実感しました。

考えてもみれば、これは当然です。

コンピューターはデジタルですから、0と1の数字をたくさん並べて計算しています。

0に1をたしたら1で、1から1を引いたら0です。
そのような処理を、膨大な数だけこなして、結果的にたくさん複雑な処理をしています。

だから究極的には、たし算とひき算しかしていません。

そう考えると今回は、

コンピューターの原理だけを使って「かけ算」や「わり算」をプログラミングした

とも言えます。
ちょっと大袈裟ですかね。

何はともあれ、計算には意味があります。
上のように「かけ算」や「わり算」の意味を深く理解してしまえば、文章題も怖くはありません。

あとがき

教科書が分かりやすくなり、一部はデジタル化しました。
無料で多くの分かりやすい解説動画が視聴できるようになりました。

分かりやすい教材があふれている今日ですが、だからといって、昔に比べて優秀な生徒が増えたという印象はありません。
つまり今も昔も、相変わらず

計算はできるけど文章題ができない

というのが、多くの生徒たちの悩みです。

計算の「やり方」はドリルで訓練しやすいです。
早く計算する「テクニック」も指導の良いネタです。

その一方で、

計算の「意味」や本質を考えさせるようなコンテンツは、なかなかウケません。
むしろ眠くなります。

しかし、それらにこだわって勉強しなければ、なかなか文章問題が得意にはならないでしょう。
そこが腕の見せどころ、と言ったところでしょうか。
きっとベテランの先生は、そういうのが得意なのだと思います。

ですから、より本質をつくようで、なおかつ面白くて飽きさせないようなコンテンツが、
きっとこれから先、どんどん登場してくることでしょう。

もしもプログラミングを活用した上のような事例が、その好例になるのなら幸いです。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

2021年8月ヒーローズ植田一本松校の運営方針と勉強方法

2021年8月の塾のカレンダー

塾長です。

愛知県は独自に「厳重警戒宣言」というものを発出しています。
そして8/4の記者会見では、間もなく「まん延防止等重点措置」に切り替える方針を出しました。

いろいろ変化が激しくて分かりにくいと思いますので、結論をまとめます。
当熟としての活動方針は次の通りでございます。

8月の教室の運営方針

年間カレンダーの通りに運営していく方針です。

2021年8月の塾のカレンダー

よって以下はお休みです。

休校期間: 8月8日(日)~8月15日(日)

8月16日(月)から夏期講習の後半を始業します。
詳細は夏期講習と一緒にご案内した「日程確認表」または「年間カレンダー」をご確認くださいませ。

注意事項

この教室の運営方針は、状況を見て適切に変更する場合がございます。
また他塾の運営方針とは一切関係がありませんので、比較や非難はおやめください。
愛知県独自の「厳重警戒宣言」や、日本の法令に基づく「まん延防止等重点措置」については、各行政の窓口にお問い合わせください。

塾がお休みの間にやっておくべきこと

優先度の高い順に以下のとおりです。

全員共通

  1. 学校からの宿題で、あと何が残っているかを一覧に書き出して把握すること
  2. できるだけ学校の宿題を進め、質問を「探して」おくこと
    → 休み明けに塾へ持ってくるように
  3. 漢字や英単語など、数の多いものの暗記を少しでも多く進めておくこと
  4. 書写・読書感想文・自由研究など、時間のかかる課題を終わらせておくこと

講習生

  1. 受講済みの単元について、間違いの解き直しをしておくこと
  2. 夏期講習のテキストのなかで「自分だけの力ででできそうな部分」を進めておくこと

受験生

高校受験生

  1. 新研究またはファイナルステージで暗記の抜け漏れ確認の2周目を終わらせること
    (進みの遅い生徒やスポーツ推薦の生徒は1周目を終わらせること)
  2. 愛知全県模試の第1回および第2回を解き直しておくこと
  3. 英語・数学・国語は、中学2年生以降の定期テストの問題を解き直しておくこと
  4. 理科・社会は、中学1年生以降の定期テストの問題を解き直しておくこと

大学受験生

それぞれ個別に指示した通り

教科書を頭に入れること!

上記の全てについて、共通の注意事項を書きます。

必ず教科書で確認する!

これを決して怠らないようにしてください。

入試や模試において「情報のソース」「ファクトチェック」「解答の根拠」は全て教科書となります。
よって、教科書が頭に入っていないのに、ただ問題集を繰り返すだけというのは、何もしていないのと同じです。

特に受験生にとって「夏までは基礎の徹底」などとよく言われます。
ちなみに

「基礎」とは「教科書を自分で作れる」くらいの実力

のことです。

××「基礎とは、簡単な問題が解けること」

こんな風に大きな勘違いをしている人は気を付けましょう。

教科書に書いてあることで、まだ覚えていないことがあれば焦りましょう。
教科書で知識の抜け漏れをどんどんチェックし、もしも抜けていたらすぐに頭に入れていください。

それが夏休みにやるべき「基礎の徹底」です。

今はそういう時期です。
知らないのに考えることはできません。

生徒たちを指導していると「できない」の99%は「知らない」です。

教科書を見ず、ただ問題集と模範解答だけを見つめて勉強を進めるのは、時間の無駄というものです。
そういう時間の無駄は止めましょう。

難し問題集を持っていても、別に偉くも何ともありません。

入試問題は教科書の範囲から出題されます。
資料問題も教科書の資料と類似のもので出題されることが多いです。

教科書を頭に入れるとは?

事例で補足します。

(例1)理科で溶解度の計算問題ができなかった

この場合は、まず次の用語の意味を正確に言えるかセルフチェックします。

  • 溶解度とは何か
  • 溶解度から何をいくつ連想できるか

教科書では「溶解度」を次の様に説明されています。

ふつう水100gに解ける物質の最大量(g)をその物質の溶解度という

これを言えない時点でアウトです。
すぐに覚える必要があります。
逆に、これを覚えていれば、計算式もすぐに出てきます。

また「飽和水溶液」「再結晶」などとその意味が、すぐ言えないなら焦りましょう。
試験で問題文の意味を正確に解釈できない危険性が高いです。

逆に、問題文が正確に理解できれば、問題の半分は解けたようなものです。

(例2)Do you playing soccer? のような文法間違えをした

英語の場合、そもそも何を間違えたのか自分では判断できないことが多いです。
実際には実力者や塾の先生などに指摘してもらう必要があります。

それは置いといて、今回はあくまでも

「教科書を見直すとはどういうことか」

という趣旨で説明しますので、そのつもりでお読みいただければ幸いです。

この間違えの原因は「一般動詞の文」と「be動詞の文」の区別が、まだまだ曖昧ということでしょう。

愛知県の中学生は NEW HORIZON です。この教科書でいえば

  • 新教科書 NEW HORIZON 中1 P26~27
  • 旧教科書 NEW HORIZON 中1 P36とP44

のあたりが頭から抜けているということになります。
知っているつもりでも、実は知らなかった、分かっていなかった、というものでしょう。

加えて、現在進行形はそもそも「be動詞の文」であり、「一般動詞のing形は、そもそも動詞ではない」という理解も大切です。
このあたりの説明は、

  • 新教科書 NEW HORIZON 中1 P102
  • 旧教科書 NEW HORIZON 中1 P36とP44

が頭から抜けているということになります。

このように、教科書を使って「基礎の徹底」を図ってください。

教科書は全員が持っているものなので、それだけ大切です。
読み返すたびに「新しい発見」があると思います。

もちろん、教科書よりも良い参考書を持っているなら、それを教科書の代わりに使っても良いです。

もっとも教科書よりも良い参考書を見つけるのも、それはそれでノウハウが必要です。

教科書の「説明の仕方」が国語力の基礎になる

最後にもう1つ。

言葉の表現力は、どこから来るのでしょうか?

私はテンプレの寄せ集めから生まれると思っています。そして「テンプレ」(テンプレート)とは教科書です。

国語力は、国語の教科書だけを読んでも養われません。

理科には理科の、算数や数学には算数や数学の、英語には英語の「ものの言い方」というものがあるからです。
それぞれの教科(知識体系)に出てくる、ものの言い方、つまりテンプレを学ばない限り、それらを組み合わせた「文章」など、編めるはずがありません。

言い換えると、国語力というのは総合力です。
国語の教科書で学べることは、他の教科書で学んだテンプレを集めて「文脈」をつくったり理解したりする能力です。

ざっくりとまとめてしまえば、次のような関係です。

  • テンプレを学ぶ → 算数・数学、理科、社会、英語、美術、技術、体育・・・
  • 文脈を学ぶ   → 国語

ですから教科書を頭に入れるということは、国語力、ひいては自分が何かを表現するときの基礎になるということです。

自分の人生のすべてに関わってくると思います。

若いうちは、できるだけたくさん教科書から「テンプレ」を吸収しておいた方が良いと思います。
オリジナリティや創造性などは、それができてから、その次の段階です。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

プログラミング教育 なぜパイソンが人気でオススメなのか?

pythonって知ってる?

宇宙とコンピューターが大好きな塾長です。

学校の先生や塾の先生が知っておくべき3大プログラミング言語といえば、

  1. Scratch(スクラッチ)
  2. python(パイソン)
  3. JavaScript(ジャバスクリプト)

ですね!(塾長の偏見です)。

冗談を抜きにしても名前くらいは知っておくべきで、けっこう重要なキーワードだとは思います。

中でもpythonの人気はずっと上昇傾向ですね。

先日はプロコースの生徒たちを指導しましたが、python(パイソン)を使っています。プログラミング教室「マイクラミング」の話です。
そして先週、新規面談をした中学生も独学でpythonを学び始めたと言っていました。なぜかドヤ顔。最近は単に「プログラミングを勉強している」というより「pythonをやっている」という方がマウントをとれるのでしょうか。
また別の会議では、とあるプロバイダーのとある技術者さんが「python本格的にやりたいなー」とおっしゃってました。

そんな感じで私の身の回りでもpythonが盛り上がってきています。

ということで、今回は

  • なぜ、python は人気上昇中なのか?
  • なぜ、python がおすすめなのか?

について書きます。

ただし、どうしても塾長の感想を含んでしまうので、そこはごめんなさい。

pythonの対象年齢(対象レベル)とは

人気があるとはいえ、pythonは「テキストプログラム」のプログラミング言語です。そのため、どうしても次のハードルが出てきます。

  • 英単語をたくさん使う
  • 1文字でもタイプミスをしたら動かない

確かにpythonの文法はシンプルですが、それでも直ちに「小学生にもわかりやすい」とはなりません。少なくとも上の2つのハードルをクリアできる精神年齢が必要です。

もしも上の2点が心配ならば、スクラッチ(Scratch)から始めるのが無難だと思います。

例えば、1文字でもタイプミスをすれば動きません。カンマとピリオドを間違えただけでもエラーです。次の2つの例を見比べてみてください。

name = "太郎"
print( "私の名前は{}です。",format( name ) )
name = "太郎"
print( "私の名前は{}です。".format( name ) )

上のプログラムは間違っていて動きませんが、下のは正しいです。

たったの1文字の差です。

こうした1文字の間違えでも冷静かつ前向きに対処できる精神年齢(IQ的な能力)が必要です。

学年や年齢ではなく、次のような感覚で判断した方が無難だと思います。

プログラミングが初めての場合

  • 学力が平均点くらいの中学1年生
  • ミスに対して前向きで、ミスの原因を調べたり予想したりするのが得意な小学5年生
  • 英語で作文が得意な小学3年生

くらいが対象の下限になると思います。

プログラミング経験がある場合

  • マイクラミングのハイコース卒業者
  • スクラッチで「自分で考えて」一通りのプログラミングができる人
  • 他のテキストプログラミング言語で「自分で考えて」一通りの制御構文をプログラミングできる人

必ずしも文法の詳細を暗記している必要はなく、調べながらでも良いですが、「自分で考えて」プログラミングしてきたことが必須です。

考えなしに教科書やネットからコピー&ペーストしただけでは、たとえそれが動いたとしても、プログラミングを経験したことにはなりません。
たまにそういう人がいるので注意してください。

pythonが人気の理由

ネット上でpythonが人気だーと話題になるのは主に2つです。

  1. 人気ランキングでpythonが上位
  2. pythonの求人は年収が高い

ランキング上位について

人気ランキングというのは、プログラマーからの人気投票の結果です。どんな理由でも1票は1票ですから「なんとなく人気があって上位」ということです。
とにかく大雑把に「pythonが好き」という人の割合が高いよ、ということくらいしか分かりません。

後半で塾長がpythonを使ってみた感想を書いておきますので、参考にしてみてください。

年収が高い件について

これは人材の人数が少ないという意味で、確かに高収入になりやすいです。

pythonの求人内容は、主に情報解析や人工知能を使ったプログラミングです。

  • 情報処理や人工知能を扱える高度な数学を身に着けている!
    なおかつ、
  • pythonでプログラミングができる!

そんな高い能力を持った人なんて、そもそも人数が少ないです。
人にできないことができるのですから給料が高くなります。

今のところ、その種の仕事は数が少ないです。
しかし今後は増えていくと見込まれていますから、学生の皆さんは希望を持って良いと思います。

とはいえ、3年後、5年後にどうなるかは分かりません。
工業的なニーズや商業的なニーズは、就職する時が来たら、その時に流行っているもので考えた方が実用的です。

もしも就職がずっと先であるならば、

「できるだけ学校の勉強をプログラミングに生かす」

という姿勢で「基礎」をしっかり鍛えておくのが良いと思います。
そういう意味では業界色の薄いpythonやScratchが無難ですね。

プログラミング言語 python の特徴

次にプログラミング言語としての特徴を挙げてみました。

pythonの特長

  1. 文法がシンプルかつ十分(短い文で済む、カッコ不要など)
  2. 高機能(高度な技術、トレンドば技術にすぐ対応)
  3. マルチプラットフォーム(WindowsでもMacでもLinuxでも富岳でも)
  4. 書いたらすぐ実行できる(コンパイル不要)
  5. 基本的に全て無料
  6. すぐに調べられる(解説ページやサンプルプログラムが多い)

pythonの得意分野

  1. 統計の全般
  2. 科学シミュレーション
  3. 人工知能の利用や開発
  4. 画像処理
  5. Webサーバー
  6. ゲーム(遅くても良い分野)

およそ何でもOKです。
日本のスーパーコンピューター「富岳」でも、ちゃんとpythonでプログラミングができますよ。

pythonの苦手分野

  1. 高速処理が必要なゲームプログラム
  2. 高速で高スループットな処理が必要なサーバープログラム

書いたらすぐに実行できる「インタープリター言語」であるため、どうしても計算スピードが犠牲になります。
そのため極端に計算スピードを要求されてしまうような処理には向きません。

フォートナイトやファイナルファンタジーのような本格的なCGのゲーム開発は無理です。
また動画編集ソフトや高度な画像編集ソフトも、pythonで開発するには無理があるでしょう。
pythonでは性能不足です。

CPUやGPUの性能を限界まで使いきるような超高速処理のプログラムを作るなら、C言語やC++、あるいはそのWindows版であるC#がおすすめです。
ほんの少しだけ性能を妥協する代わりに、マルチプラットフォームで動くアプリを作るならJavaがおすすめです。マルチプラットフォームの中ではJavaが最速です。

ただし、そのようなアプりの中で「作業を自動化するためのプログラミング言語」としてpythonが採用されている場合もあります。例えばBlenderというCGを作るアプリです。

性能を抜きにすれば、pythonはトップレベルに強力なプログラミング言語と言えます。

実際にpythonを使ってみた感想

塾長はこれまで、仕事やバイトなどで、C言語、C++、Objective C、Visual C++、Visual Basic、BASIC、Java、JavaScript、PHP、python、SQL(どこまでプログラミング言語とみなすか悩ましいですが)などを使ってきました。

結論から言えば、それらの中で pythonがダントツに良かったです。

書きやすいし、読みやすいし、思ったことがすぐできる!

という意味で、とにかく使いやすいです。初めてpythonを使ってみたときは、本当に衝撃でしたよ。

プログラマーの視点で優れていること

まず「プログラマーの視点」から見て、使いやすいです。

簡潔で読みやすくて無駄がない。それなのに、奥が深い!

そんな文法です。

きっと、プログラミングに関する「先人の知恵」が、ふんだんに組み込まれているから、そんなエレガントな文法になったのでしょう。

例えば「デザインパターン」研究されてきた知恵の一部が、言語の仕様として最初から組み込まれています。デコレーターやイテレーションなどです。
他にも、標準で用意されているオブジェクトの型の種類がちょうど良いです。細かすぎず、粗すぎず、それでいて、順序付けできるか否か、イテレーティブか否か、変更できるか否か、というカテゴライズの全てを網羅しているラインナップです。

ちょっと細かい話になってしまいましたが、要するに、本当によく考えこまれた言語だなぁと思います。

こうした言語仕様の何がすごいかと言えば、pythonで良いプログラムを書くだけで、良い設計をしたのと同じ価値が生まれるということです。
コーディングと設計の区別が、もはや無くなってきたということです。
優れた言語仕様と読みやすさが相まって、pythonのプログラムは仕様書としての価値も高いと言えます。

実際 pythonには、プログラムから仕様書を自動生成してしまうツールがいくつか用意されています。

とはいえ、こうした「プログラマーの視点」から見たエレガントさは、他の新しいプログラミング言語も負けてはいません。いろいろなプログラミング言語がタケノコのように、あちこちで生まれている時代です。

しかし、それでもなお、pythonが凄いと言いたいです。その理由は次の通りです。

科学技術の視点で優れていること

pythonは、なんと「数学や物理の視点」から見ても使いやすいのです!

他のプログラミング言語と一線を画す理由が、正にこれだと塾長は思います。

これまでのプログラミング言語は、数学や物理を取るか、アプリを取るか、のどちらかでした。
数学や物理が得意になれば、アプリを作るのが苦手になります。
アプリを作るのが得意になれば、数学や物理が苦手になります。

ところがpythonは最初から両方できます。

数学や物理が使いやすいので、pythonは大学の研究室や企業の研究開発で、よく使われています。

かつて理系の研究室ではC言語やC++(以降、まとめて単にCと略記します)を使って、研究に使う数学や物理の公式をプログラミングしていました。Cは何でも作ることができて、しかもプログラムが爆速で動作する、という最強のプログラミング言語ですが、その代わりに、何でも自分たちで用意する必要があります。先輩から後輩へプログラムを引き継いで、改良したり機能を拡張したりして、多くのコストと時間をかけてプログラムをメンテナンスしていく必要がありました。

しかし今は pythonのおかげで、そんな苦労の大部分が不要になってしまいました。pythonではたいていのことが最初からできるからです。

よっぽど計算スピードが重要になる研究でもしない限り、もう研究室でCをやる必要はありません。Pythonのお手軽さを1度でも味わってしまったら、もうCには戻れないでしょう。

そして実は、pythonはCと仲良しです。python自身がCで作られているからです。そのためスピードが重要な部分だけCで作り、残りをpythonでつくる、というハイブリッドな開発もできてしまいます。実際に高速なライブラリーも多く提供されています。

さて、数学や物理のプログラミングがしやすいということは、数学や理科の教科書の延長線上でpythonが利用しやすい、ということです。つまり、これからは高校生や大学1年生の教育でもPytnonの利用が増えると思います。

Pytnonのプログラミングに慣れてしまうと、もう他の言語が「めんどう」「ムダが多い」などと思えてしまいます。

人気の秘密はこうしたエレガントさにあるのだろうと勝手に想像しています。

忘れても問題ない文法とは?

誤解をしてほしくないので、最後にテキストプログラムの文法について補足しておきます。

今回のブログでは、pythonのメリットを語るために、文法や言語仕様について多く書きました。

でも誤解をしないでください。実際には文法を細かく「暗記」する必要はありません。しかも、これはpythonに限ったことではありません。

プロの世界でさえも、細かい文法は調べながらプログラミングしています。

意外でしょうか?

でも、これは常識です。例えば、

「C言語で仕事するのは2年ぶりだな。if 文の書き方はJavaとどう違うんだっけ?」

「PHPひさしぶり。文字と文字を連結する演算子は何だっけ?」

みたいなことは、プロでもよくあります。

プロの世界では1人が7~8種類のプログラミング言語を扱うのが普通です。C言語だけ、pythonだけ、というプログラマーなんて新人くらいです。
とはいえ1つのプロジェクトに使うプログラム言語は1~3種類くらいで済みます。ですから1つのプロジェクトに従事している間は、残りの使っていないプログラミング言語の細かいことは、忘れてしまいます。

たいていのプログラミング言語は似ていますが、細かいところで違います。そのような

プログラミング言語によって異なる部分

については、いちいち細かく覚えていられませんし、そこの暗記にこだわる必要もありません。
代わりに、

  • 標準で使えるオブジェクトの型は言語によって違う
  • 変数の初期化、参照、代入の作法が言語によって違う
  • 分岐は if – else が基本だが、細かいルールや switch を使えるかなどは言語によって違う
  • 繰り返しは for や while が基本だが、細かいルールは言語によって違う
    ・・・

みたいな勘所が、経験とともに蓄積していくものです。

「何を暗記しなければならないか」という項目は十分に知っておく必要はあります。
だからと言って、今すぐに暗記している必要があるか否かは別問題です。

細かいことは、必要になったら調べて暗記します。そしてプロジェクトが完了するまでは暗記の状態を保ちます。
しかしプロジェクトが終わって使わなくなれば、また忘れてしまうでしょう。

そんな感じで良いです。その方が、

「今回、また新しいプログラミング言語を使うことになった。」

と言われても、びっくりせずに済みます。
ほかの言語との違いを調べて使いこなすことには、変わりがないからです。

逆に、少しでも記憶があいまいなら、じゃんじゃん調べて確認します。
不確かな記憶のままプログラミングを進めてしまう人の方が信用できません。

プログラミングで大切なのは、

× 文法の知識が完璧であること
○ 全て説明できること

です。

プログラムの1行1行について、

「なぜ、そう書いたのか」

を1文字も漏らさず説明できる必要があります。
1文字でもあいまいだったら、すぐに調べる必要があります。

不明なことは、すぐ調べて確かめる!

これ、大切です。

勉強も同じ

細かい知識を忘れても、大した問題ではない。

これは数学や国語でも同じなのではないでしょうか?

社会や理科は、もっとそうですよね!

例えば歴史。

細かいことは、レポートを書いているときは覚えているかもしれません。
しかし、それが終われば忘れてしまいます。
相変わらず社会の定期テストや入試問題の多くは「暗記の詰込み」ですが、受験が終わったら忘れます(※)。

それでも、歴史の流れや国際関係の背景は、いつでも語ることができるだけの素養が身につくでしょう。

・・・みたいな感じですね。

よく、カリスマ的な人がプログラミングの実況動画を出しています。

すらすらと軽快にプログラムを書いて見せています。
そんな風にできるのは、たまたま業務でよく使っているか、リハーサルを十分にしているからです。

そういう人でも、違うプログラミング言語で同じものを作れと言われたり、違うジャンルのアプリを作れと言われたら、しばらくの間は、調べながらプログラミングしていくことになります。

だからといって、その人の能力が低いことにはなりません。

すらすらプログラムを書ける場面は、自分にとって、ある程度プロジェクトが乗ってきた時期です。

プログラミングの経験が蓄積できていれば、たとえ最初の数百行が遅くても、残りの数千行から数万行のプログラムはすらすら書けます。

逆にコンピューターを使いこなせるはずのプログラマーが、文法の暗記で消耗しているようでは先が思いやられます。
暗記で苦労する「暇」があったら、どんどん調べまくって仕事を先に進めましょう。そうするうちに勝手に頭に入ります。

※ 最近の入試問題は、理科や社会でも暗記の詰込み要素が無くなってきました。
多くの資料でヒントがたくさん与えられている問題形式が多くなってきました。そのため暗記がうろ覚えだとしても、今まで調べたり学んだりしてきた経験が十分にあれば、ちゃんと解けるように工夫されています。

まとめ

今回はpythonの魅力について書きました。

そのためにpythonの文法や言語仕様について少し詳しく書いたところもありました。だからと言って文法の詳細を覚えてほしいと言っているのではありません。

1つのプログラミング言語について、特徴をよく調べて使いこなすことが大切です。

そして少し時間がたって細かい文法を忘れたとしても、気にすることはありませ。細かい文法は、使う時に調べて確認すればよいです。

大切なことは、

「なぜ、そう書いたのか」

を1文字も漏らさず説明できることです。

あいまいなことや不明なことを放置せず、すぐに調べて確認する姿勢が大切です。

このことは勉強も同じだと思います。

 


ヒーローズ植田一本松校の進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたりますが、当塾の理念に反するので生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校

私立高校

中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

偏差値が高くてもコンピューターが使えなければ意味が無い

無意味な情報公開

宇宙とコンピューターが大好きな塾長です。

プログラミング教育。
どんどん強化されていますね!

昨年から小学校の全教科で。
今年から中学校の技術家庭科で。
来年から高校の情報1で。そのまま大学入試科目にもなります。

庶民化するプログラミング教室

こうした流れの中で、最近アンケート調査が行われました。

保護者の7割が子どものプログラミング学習を「検討する」と回答

もう、そういう時代になってきました!

これまでのプログラミング教室は、どちらかと言えば「意識の高い」ご家庭向けの習い事でした。
それが今年あたりから、どの家庭でも当たり前に検討する習い事になってきたということです。

これは良いことです。
とはいえ、日本は遅れている状態から、やっとのことで普通の状態になってきた程度。
まだまだ、これからです。

大人はどうなの?

一方、大人たちの方は大丈夫なんでしょうか?

今回は

「頭の良さが無駄になっている!」

という日本の課題を明らかにしたうえで、子供たちに

「本来はこうあるべきだよ!」

を示したいと思います。

ということで、こんなニュースのネタから話が始まります・・・

国家のシステムが手作業だった!?

2月17日のニュースです。

「日本の技術力の低さ」「生産性の低さ」が話題になりました・・・

厚労省、コロナ感染者数を手集計 菅首相「承知している」」(JIJI.COM)
https://www.jiji.com/jc/article?k=2021021700893&g=pol

国はどうやって全国のコロナ感染者の人数を把握しているのでしょうか?

なんと、その方法とは・・・手作業です!!

厚労省の委託事業者が、
深夜0時を過ぎたら「よーい、ドン」って感じで
全国の48都道府県や政令指定都市のホームページを見まくり、
数字を目で確認し、
1つ1つ手作業で数字を集めてから、
合計を計算!

という手順のようです。

気合とド根性!
炎の集計マニュアル!?

えっ、仕事のやり方が最初から深夜残業ありき!?

トホホ・・・

官僚もコンピューターの使い方が分からない

官僚の皆さんって、めっちゃ頭が良いんですよ。
そんな優秀な皆さんが、どうして今まで放っておいたのでしょうか?

う~ん、にわかには信じられませんでしたよ。だって、国のやることですよ。

きっと大そうなシステムがあって、
きっと日本中からネットワーク経由で数字が集められてきて、
きっと自動的に集計されているのだろう

などと思っていましたから。

それがなんと、僕らが自分たちでネットで調べて得られる情報と、質も手順も同じだったということです。
しかも、深夜0時を過ぎてから仕事をするのが正常な作業マニュアルという位置づけ。

わざわざ深夜残業の人件費を使っていたのです。
これでは働き方改革も進みません。

偏差値が高い人たちが集まる霞が関。
その官僚たちでさえ、コンピューターで集計することができませんでした。

コロナが緊急事態というのは分かります。
大変だと思います。

でも、問題の本質はそこではありません。
もっと根深いところにあります。
それは誰も次のことを考えなかったということです。

情報の再利用性

職場の仕事のやり方というのは、日々の改善の積み重ねなんですよね。
今までコンピューターを使おうとして来なかった悪しき職場の文化。
そういう悪い習慣が、ずーっと蓄積してきた結果が、正にここで露呈してしまったということです。

なんとも残念なニュースでした。

あらためて日本がIT後進国であることが浮き彫りになってしまいました。

それにしても・・・あれ?

日本は技術大国のはずじゃなかったっけ?
技術大国なのにIT後進国?

おかしいですね。

そこで、なぜコンピューターでスパッと集計を出せないのか、ちょっと調べて考えてみました。

自治体が情報発信する方法がダメだった

さて、デジタル庁が発足するのは今年の9月です。
つまり、日本全国の行政機関がネットワークでつながっていくのは、きっとその後の話になるでしょう。

そう考えると、今の段階で国や官僚の仕事を批判するのは早すぎかもしれません。
それに、大きな組織ですから、一部の失敗で組織全体についてどうこう言うのは気が早いです。
違う部署へ行けば情報の猛者がいらっしゃるのかもしれません。

批判だけならアホでもできます。
もっと生産的な記事を書くべきでした。

これは失礼しました!

それならば、せめて

「都道府県のホームページから感染者数を調べる処理」

くらいは自動化を提案したいところです。
少なくとも深夜残業ありきのマニュアルは良くありません。
深夜はコンピューターに作業をさせて、人間はお家に帰って寝ましょう。

逆に、なぜ最初からそういう発想でマニュアル化できなかったのか不思議です。
きっと何か事情があったはずです。
ということで、

都道府県のホームページがどうなっているのか?

を実際に見てみました・・・

そうしたら、なんと、
気が付いてしまいました。
さらに悲惨な現実に!

もう、本当にビックリですよ。
都道府県それぞれのホームページが、そもそも悲惨だったんです。

「数字」じゃなくて「画像」だったんですよ!

なぜ集計表を画像にしたらダメなのか?

例えば、エクセルなどで集計表をつくったとします。

この表の数値データをそのままWebサイトに載せて公表してくれたらよかったです。
見た人はその数字を再利用できます。
Webサイトから数字をコピーして、別の集計作業にすぐ利用ができます。

情報の再利用です。

ところが、今回はそうしませんでした。
画面に映ったエクセルの表の「写真」を撮って、その写真をホームページに貼り付けたのです。
(この記事の後半で、その実例を示しています)

写真から数字をコピーすることはできません。
それを見た人は、写真を見ながら、また手作業で数字を1つ1つ入力する、という作業が発生してしまいますよね。

情報が再利用できません。

数字は数字のまま公表すべきなのに、わざわざ写真で公表した。
この方法はダメですよ!

他のことに例えてみれば、もっと分かりやすいです。

はじめの一歩は「情報の再利用性」から

もしもあなたがLINEやメールなどで相手から電話番号を聞かれたら、どうやって知らせますか?

普通は、電話番号の「数字」をメッセージで返信しますよね。

それなら1往復のやり取りだけで済みます。
しかも相手は電話番号をクリックするだけで電話帳に登録したり、折り返しの電話をしたり、といった次の行動がすぐにできます。

つまり、相手が「利用しやすい情報の形」で返事をしようと考えますよね。

わざわざ電話番号を紙に書いて

「紙に書いたから、深夜0時を過ぎたら、私の家まで紙を受け取りに来てね。」

なんて相手に言ったらどうなるでしょう?

紙に書いたメモを写メにとって送るのも、ちょっと面倒です。
相手は写真とアドレス帳を行ったり来たりして登録作業をする手間が発生します。

ちょっと意地悪ですよね。

コンピューターの世界では不便ということになります。

このように情報を伝える時には、情報の種類にふさわしい形があります。
相手にとって「利用しにくい」「手間がかかる」ような形で情報を送っても、相手に伝えた意味が半減してしまうのです。

今回の学び:

数字や文字の情報を画像にしてしまうと、情報の再利用性が悪くなる!

各都道府県のホームページは、コンピューターの目で見ると、とても不便な情報発信になっているワケです。

情報の墓場

私は、紙の印刷物や画像ファイルを「情報の墓場」と読んでいます。

コンピューターが活用しにくいデータ形式だからです。

上の例で見たように、せっかく数値や文字というデータになっているものを、わざわざ紙や写真にしてしまったら単なる嫌がらせです。
もともと使いやすかった情報が、紙や画像ファイルにされてしまったら台無しになるからです。

熱がエネルギーの墓場と言われるように、コンピューターの世界では紙や写真などがデータの墓場に相当すると思います。

愛知県ホームページによる2021年4月13日の発表の例

(注意!)各都道府県が悪いというのではありません。日本全体に蔓延している問題です。ぜひ「自分の問題」として見て欲しいです。ピンチはチャンスかも。

試しに愛知県のホームページのHTML構造はこんな感じでした。ちなみに他の県や市も似たようなモノでした。

/html/body/div[1]/div[3]/div[3]/div/div[5]/div[1]/p[1]/img

<html>
<body>
<div id=”container”>
<div id=”mymainback”>
<div id=”main”>
<div id=”main_a”>
<div id=”main_body”>
<div class=”detail_free”>
<p>
<img alt=”030412検査陽性者” src=”/uploaded/image/249717.png” style=”height:885px; width:600px”>

最後がimgタグで画像ファイルになっています。
ですから、コンピューターの目で見ると

「感染者数のデータ」=「249717.png という画像ファイルがあるらしい」

くらいまでしか情報が読み取れません。
もちろん人間の目で見れば、写真として

 

愛知県発表_感染者数_20210413

というふうに見えます(愛知県のホームページの画像より)。

この表は表のように見えますが、なんと1枚の写真です。
ですから、ホームページ上でマウスで数字を選択したり、数字の部分を選んでコピーしたりすることができません。

試しに、上の表で数字のところを選択してみてください。

できないでしょう?

数字じゃないからです。選択することすらできません。

マジか!?

って思うでしょう。
そういうホームページのつくりなんです。

もちろん感染者数は一般公開されている情報ですから、セキュリティとか情報の公開範囲とかは関係ないですよ。ホームページで表示されている時点で、そういう話ではないですから。

ここまで公開しておいて、よりによって何で画像形式なの?

ってことです。

まぁ、とにかく、現状がこういう状況になっているわけですから、人間を深夜0時まで残業させる羽目になるのです。

9月に発足するデジタル庁は、こうした問題を1つ1つ解決していくわけですね。
すごく大変そう・・・
でもやり切らなければ日本に未来はありません。

人工知能に読ませればいい、はウソ!

こんな意見が出て来そうなので、それも考えておきましょう。

都道府県が公表しているホームページを人工知能に読ませれば、自動化できるのではないですか?

はい、技術的には可能です。

ご周知のとおりOCRという処理やディープラーニングという種類の人工知能を使えば、画像から文字や数字を読み取ることが可能です。
ただし、これは割に合わないコストがかかります。

なぜなら、データを写真に変更するエネルギーに比べて、写真を人工知能が読み取るエネルギーの方が、何百倍も必要だからです。

だったら最初から写真にしなければいいじゃん!

ということになります。つまり一番エコなのは、

何もしないこと

です。
表をつくったなら、そのまま表は表として公開すればよいのです。
エクセルで表を作ったのなら、その表をコピーしてHTMLで貼り付けることもできます。

わざわざ画像という別の形式に変換する手間など最初から不要です。

人工知能を開発するために人件費や開発費を使い、人工知能を運用するために大量の電気エネルギーを費やして、CO₂の排出量も増大。そのペナルティ金をまた海外へ支払う。そんな馬鹿な話はありません。

最初から素直に「使いにくいから直してほしい」と指摘して正す方が、何百倍もコストが安くすむでしょう。

ということで「画像形式で公開」という根本原因をとり除けば一瞬で解決です。

画像ファイルにこだわって人工知能にホームページを読ませる案は却下です。
税金の無駄です。

どうしたらよいか?

まず第一段階としては、地方の情報公開を、画像ファイル型からテキスト型に変えていくことです。
そうすれば少なくとも人間が集計作業をする手間は無くなります。

愛知県のホームページに関して言えば、<img>タグを挿入しているプログラムを、ちょこっと修正して<table>タグなどに変更するだけです。
このときタグに与える id の値は、国から指定して統一を図った方が良いでしょう。

そもそも画像ファイルを毎日どのように作成しているのか知りませんが、データを表形式にする方がプログラム的には楽ちんのはずです。

この程度ならプログラムの修正はごくわずか。ちゃんと設計されたシステムであれば数万円くらいです。運用テストなどの手数料を考えても5万円くらい。何十万円も請求されたらボッタくりですね。

そして第2段階としては、Web-API化することです。
これは9月に発足するデジタル庁の仕事になるでしょう。APIの仕様は国内で統一した方が良いからです。
長い目で見たメンテナンス性を考えれば、外部仕様だけではなく、ある程度のアーキテクチャまで統一した方が良いとは思います。

総務省のWebサイトには、すでにWeb-APIが組み込まれていますから、もう実績があります。
あえて注文をつけるなら、XML形式ではなくJSON形式の方を標準にして欲しいことくらいです。

こういうのは誰がやっても同じような仕様書になるので、国の方で「えいやっ」と仕様を決めてしまえばよいと思います。
今までさんざん手作業で情報収集に苦労して来た霞が関の官僚の皆さんです。彼らに「どんな情報が欲しい?」とヒアリングすれば良い仕様書に落とし込めるでしょう。

ありがちなミスは、自治体から意見を聴こうとして全国から人を招いたり、大きな会議体を作ったりすることです。そんな会議はまとまりません。人を集めるお金と時間があるなら、その経費を「後から変更や拡張がしやすい設計にする」方へ割り当てた方が賢明です。

仕様書ができたら、助成金付きで自治体へWeb-API化をお願いすればよいでしょう。

マスコミのみなさんもAPIを通じて即座に情報収集できますから、密な状態で取材する必要はなくなりますよ。

モノづくり教育の話は横に置いておきましょう

さて、情報の再利用性について考えてきました。

教育改革では、ひたすら子供たちがプログラミングを学んでいく話になりがちです。

ところが大人にもプログラミング教育(正確にはプログラミング的思考の教育)を急ぐ必要がありそうです。
上で見たように、日本の大人たちは情報の形式を正しく選択することに、まだ不慣れです。大人は大人で勉強していく必要があります。

何より、プログラミング教育をロボットや自動車などの「モノづくり教育」のことだと勘違いしてしまう大人が、まだまだ多いです。

日本は要素技術とハードウェアには強いけど、ソフトウェアには弱い。

そこが日本の限界を作っています。
大人の皆さんにお願いしたいのは、

プログラミングとモノづくりを切り離して考えよう!

ということです。

ハードウェアの生産力を増強する方向性に教育を重点化しても、日本の競争力は増えません。
国内では、どう見ても物価と人件費が割に合いません。
ハードウェアの生産を増やしても、働くほど貧乏になる未来しか見えません。

GAFAを見ればわかるでしょう。

プログラミング教育にもハードウェアが使われているだって?

いえいえ、その中身を見てください。どんなパワーバランスで生産されているのかを見てほしいです。

PC、micro:Bit、レゴなどでさえ、どれも外国製で、しかも設計やライセンス元は先進国で、生産は途上国という役割分担です。
パソコンやCPUも、設計やライセンス管理を行う役割と、実際にモノを生産する役割は、違う国です。
もちろん、前者はソフトウェアで、後者がハードウェアです。

これからはソフトウェアをつくった国や企業が圧倒的な競争力を持ちます。

そのため、純粋に

プログラミングで情報を活用できるセンスを磨く!

ことに注力した方が良いのです。

上で見たように、日本の課題は情報の扱い方を知っている大人が少なすぎることです。

だからプログラミングと言えば、すぐにモノづくりに発想が行ってしまうのです。
だから、なかなかキラーアプリが日本から誕生しません。

プログラミング教育が分かり難いのであれば、次の方針を徹底させるのでもかまいません。

「情報の再利用性」のセンスを早くから身につけさせる。

大人も子供も共通です。

とりあえず、これを日本の人材育成の目標としてはどうでしょうか。

コンピューターで情報を効率よく扱える。
そういうセンスを身に着けた人材を、これからどんどん増やしていく必要があります。

大人もプログラミングを楽しもう

逆に言えば、まだまだ仕事がいっぱいあるということで、これは景気の良い話です。
日本改造計画を再び行えるくらい、盛りだくさんですね。

せっかくやるなら、楽しんでしまえば良いと思います。

上の例で見てきた通り、これは国家の基盤に直結する問題です。
日本の生産性向上にも直結します。

でも「生産性」という言葉が良くないですね。
なんだかつまらなそう。

コンピューターはもっと楽しめるものであって良いと思います。

私たちが想像していることをどんどん実現してくれる便利な道具。
それがコンピューターです。
表現したいことをどんどん表現して、それを楽しめばよいと思います。

ただ、そのときにちょっと「情報の再利用性」について気を遣えばよいと思います。

人間の体よりも、はるかに速く回って、疲れも知らず、ミスもしない。
それがコンピューター。

それを使いこなして、もっと楽しいことをしてやろう!

大人だって、まだまだこれからです!

人生100年の時代なのですから。

日本からキラーアプリが爆誕するためには

ICTで特に重要なのは「キラーアプリ」つまり「多くの人に使われるソフトウェア」の存在です。今のところアメリカや中国に比べると、日本はキラーアプリを作ることが苦手です。

というか、そういう能力のある人たちがみんな海外へ逃げてしまっています。何しろ日本では価値を認めてもらえないのですから無理もありません。

ソフトウェア技術者は、日本にいれば年収300万円。海外に行けば年収1000万円。そりゃ逃げられます。

博士号を持っている人材が就職難になるような国です。それもこれもソフトウェア産業が乏しいからです。

それならばソフトウェア産業を活性化させて、優秀な人材が日本でも活躍できるようにすればよいです。

そうすればキラーアプリが日本から爆誕するのも時間の問題と言えます。

ゲームやアニメもソフトの1種ですが、その分野では既に多くのヒット商品が日本から爆誕しています。

十分に土壌はあると思います。

日本でソフトウェア産業を活性化させるためには、まず日本人がソフトウェアの価値をよく理解することだと思います。

モノの値段は人々の価値観で決まるからです。
価値が分かる人が増えれば、海外のようにソフトウェア産業に投資する人が増えるでしょう。

アメリカや中国と比べると、日本では20分の1くらいしかベンチャー企業に資金が集まらないと言われています。
資金が集まらないということは、日本のトップ層が価値を認めらていないか、価値を理解できない、ということです。

そりゃ海外に逃げていきたくなりますよね。

政治でも経済でも、ソフトウェアの価値を理解できる人が組織のトップに就くべきだと思います。

 


ヒーローズ植田一本松校の進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたりますが、当塾の理念に反するので生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校

私立高校

中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL