個別指導塾、学習塾のヒーローズ。植田(名古屋市天白区)、赤池(日進市)の口コミで評判!成績が上がる勉強方法が身につく!振替、自習も便利!
// 条件1に該当しない場合の処理

私立高校

偏差値でも学歴でもなく、どこでも楽しめる力

塾長です。

気が付いたら何か月もブログを書いていませんでした。

ちょっと遅れましたが・・・

いやー忙しかった~

受験も、学年末テストも、新学期の準備も、全てひと段落しました。

今週から新しい指導システムを導入しましたが、その準備もひと段落しました。
合わせて、教室では一足早く新学年をスタートいたしました。

ご協力いただきました保護者様、生徒の皆様、講師の皆さん、ありがとうございます!

そんなわけで、ずっと内部の充実を優先して作業をしてきました。
おかげで新しい生徒の募集は全くしてませんでした。

やっと少し余裕が出て来ましたので、もしもお問い合わせはがあれば、ヒーローズ本部経由でお知らせくださいませ。

さて、少し遅れてましたが、卒業生の皆さんに言葉を贈りたいと思います。

卒業生へ贈る言葉 2023

ご卒業おめでとうございます。

あまり偉そうなことは言えませんが、塾長の少ない経験と知識から分かる限りの言葉を贈りたいと思います。
そこで今日のブログのタイトルの通り、

「偏差値でも学歴でもなく、どこでも楽しめる力」

ということを書きたいと思います。

人工知能は敵か味方か?

少し前、みなさんが志望校の校舎で、希望と緊張感をもって試験問題に挑んでいたころ、
世間ではChatGPTと呼ばれる人工知能が話題になっていました。

↓↓↓ これです ↓↓↓
Introducing ChatGPT

一言でいえば「何でも博士」です。質問すると何でも答えてくれます。
そんな人工知能の無料サービスです。

きっとご存じの方も多いでしょう。
色々なYouTuberたちが、ChatGPTの解説動画を上げていますので、細かい説明はそちらに譲ります。

ChatGPTが、なぜ大きな話題になったのでしょうか?

それは、人工知能の能力が、多くの人の予想をはるかに超えて優秀だったからです。

ある人はチャンスを感じましたし、またある人は不安を感じました。

みなさんも、ぜひ使ってみてください。
多かれ少なかれ、きっと価値観が変わることでしょう。

どんなものなのか、ちょっとお見せしますね。

ChatGPTの利用例

まず手始めに中学2年生の理科の単元「植物の体のつくりとはたらき」について質問してみました。
今年の愛知県校公立高校入試でも、大問2で出題されましたね。

上のように、すぐに答えが返ってきました。とても便利です。
(人工知能の答えが正しいとは限りません。そのつど確認が必要です。)

せっかくですから、新学期に関係することも聞いてみましょう。

例えば、文化祭の企画について相談してみたらどうでしょうか。
今週からマスク規制が緩んだことだし、こんな質問をしてみましょう。

体育祭の企画も混じっちゃいましたが、参考になりますね。

さて、これをヒントにクラスで話し合いを進めた結果、上の1や4から着想を得て、演劇をすることになったとしましょう。
他のクラスと被らないよう、できればストーリー展開は完全オリジナルにしたいところです。
すると誰かが物語を作る必要があります。

「だれか物語を作れませんか?」

しかし誰も手を挙げません。どうしましょう?

まぁ、それも人工知能に考えてもらったらどうでしょう。

おお!
10秒も経たないうちに、演劇用の物語が作られてしまいました。

こちらからの質問の内容が、物語のメタ情報として混ざってしまったのは予想外。
でも、オチが無難だし、これはこれで良い演劇ができそうですね。

ということで、ChatGPT、すごくないですか?

ちなみに、数学の質問も答えてくれるし、簡単なプログラムなら作ってくれますよ。

ネット検索の上位互換なんてもんじゃありません。
まったく新しいコンピューターの使い方が登場してしまった、というのがお分かりいただけるでしょう。

みなさんなら、どんな使い方をしますか?

なぜ勉強するのか?

このような便利な人工知能が、これからどんどん出てきます。
しかも多くは無料で使えます。
すでに検索やLINEなど、いくつかのアプリの裏で人工知能が動いています。

きっと、みなさんが大人になる頃には、人工知能を抜きにして生活する方が難しいでしょう。

さて、人工知能が何でも答えてくれるなら、もう私たちは勉強しなくても良いのでしょうか?

作文の宿題は人工知能に作らせればよいのでしょうか?
そもそも宿題を出すことに意味があるのでしょうか?

みなさん、ここは真剣に考えてみるところだと思います。
ぜひ考えてみてください。

皆さんが学ぶ意味とは何でしょうか?

わざわざ努力して能力を身に着けるのは、何のためでしょうか?

高校や大学に進学してから、そこで何をどう学びますか?

こういうことを考えざるを得ない時代になってしまいました。

人工知能に負けない能力?

昔からコンピューターは大量の「データ」を処理するのが得意でした。
しかし一方で、「情報」は処理できないだろうと思われてきました。

数字の1つ1つが「データ」だとすれば、それらの意味もセットにした文脈が「情報」と言えるでしょう。
コンピューターは基本的に計算器ですから、数値を処理できても、それらの意味は理解できません。

つまり、コンピューターが処理できるのは「データ」までで、それを「情報」として処理するのは人間にしかできないだろう、ということです。
だから、

人間は情報の扱い方を鍛えればコンピューターに負けないはずだ!

ほんの10年くらい前までは、そんな風に言われてきました。

ところがここ数年で、どうやら「情報」も処理できるようになってしまったようです。

正確に言えば、今でも相変わらずコンピューターが何かの意味を理解することはないのでしょう。
けれども、あたかも理解して答えたかのような結果を生み出せるようになってしまいました。

少なくともコンピューターが意味の通る文章をすばやく作り出せる事実を、ChatGPTによって誰もが体験できます。
しかもその作文力は、その辺の大学1年生よりも優れたレベルと言えます。

だから人間がコンピューターよりも優秀だと言えることが、それだけ失われてしまったと言えます。

人工知能に職を奪われる・・・

という危機感をあおる人たちが増えて来ましたが、そう考えるのも自然でしょう。
人工知能が「情報を処理できない」という壁を突破してきました。
コンピューターができるのであれば、人間にとって、

知識の詰め込み教育なんて意味がない!

という流れになってきました。

教科書の裏側

実は、皆さんが学校で学んできた教科書にも「人工知能に負けない」という方針が反映されています。
学校の先生は、それらを意識して皆さんに授業を提供しています。

例えば、

  • 人工知能は想像力がないから、人間は想像力を鍛えるべきだ。
  • 人工知能は自発的に行動できないから、人間は主体性を強化すべきだ。
  • 人工知能は図や表などの理解が苦手だから、人間は資料を読み解く能力を鍛えるべきだ。

といったような教育方針です。
これは分かりやすいし、納得しやすいでしょう。

皆さんが経験した高校受験や大学受験の出題傾向が、どんどん変わっているのはそのためです。

  • 問題文の文章が長くなってきた
  • 問題文の中でやたらと図表が増えてきた

という出題傾向の変化は、

「人工知能に負けない」

という方針が色濃く反映されているからです。

長文や図表の中から必要な情報を持ってきて編集し、回答としてまとめる・・・
そのような情報処理はコンピューターが苦手であるからこそ、人間の能力として伸ばすべきだ。
そして入試としてそのような出題をすれば、学校の教育も変わるはずだ。

そういう方針が色濃く出ています。

しかし、ChatGPTの能力が予想以上に高かったのがショックでした。

人工知能が苦手なものなんて、そのうちに無くなってしまうのではないか?

そのようなショックです。

無謀な挑戦

追い打ちをかけるようですが、ChatGPT はほんの1例にすぎません。
文章だけにとどまらず、音楽、映像、動画など、色々な分野で人工知能が瞬時にコンテンツをつくってくれるサービスがどんどん出てきています。

さらに泣きっ面にハチですが、3月にChatGPTがバージョンアップしました。
文章だけでなく、画像も扱えるようになりました。
最初のリリースからたったの3か月、日本でニュースになってから、たったの2か月で、もう次のリリースです。
進化のスピードに人間が(報道が)ついていけません。

一方、教科書の改訂は4年ごとです。
教育方針を大きく変えるような教育改革は10年くらいの歳月を費やしています。

そして残念ながら、その10年前に国が想定した「人工知能に負けない」という教育方針は、いきなり音を立てて崩れつつあります。

どんな教科書を使って能力を鍛えたところで、いつかは必ず人工知能に追い超されるからです。
そういう事実を突きつけられてしまったのです。

ここから次のようなことを学ぶ必要があります。

次の教育改革や教科書の改訂を待っても無意味。
誰かが方針を決めてくれるのを待っているのも無意味。
私たちは自らの頭で考えて、刻一刻と変化に対応しなければならない。

断っておきますが、この話は、あくまでも「プロダクトやコンテンツを生み出す能力」つまり「既存の産業において生産性を高める能力」の話です。
人工知能に職を奪われないために、どんな能力を身に着けるべきか、コンピューターが苦手なことを身に着けるべきだ、という文脈での話です。

もちろん、人工知能が感情や感性を獲得することに関しては、あいかわらず不可能だろうと、多くの人が考えています。
塾長もそう思います。
人間の成長を促し、暖かく見守るという学校教育が無くなることは今後もないでしょう。

話を戻しますが、

「プロダクトを生み出す能力」という意味では、もはや人間が人工知能に1つも勝てなくなる日が来るのは時間の問題と言えます。

そういう意味で「人工知能に負けない」という目的で勉強しても、それは理由にはならないでしょう。

人工知能に挑戦するために勉強するのはやめた方が良いと思います。

シンギュラリティ

このまま人工知能が賢くなっていって、ある日、とうとう人間の脳と同等の能力を手に入れてしまう日が来たとしましょう。

そのような日のことを「シンギュラリティ」と呼ぶそうです。
「技術的臨界点」とも呼ぶそうです。

要するに、シンギュラリティが人工知能の本当の誕生日というわけです。

ちなみに、人工知能が「感性」をも手に入れてしまうのは、さすがに無理だろうと思います。
というわけで、最初から感性を抜きにしてシンギュラリティの話をしています。

はた織り機の登場で、はた織り職人が仕事を失いました。
エクセルの登場で、暗算名人やそろばん名人を雇う必要がなくなりました。
こうして、職場から職人や事務員の仕事を、人工知能が次々に奪っていきました。
そしてある日、ついに人間は何1つコンピューターに勝てなくなりました。

あくまでもこのような文脈で「シンギュラリティ」が来るのは何年後でしょうか?

1年ほど前までは、2045年ころに訪れるだろうと予想されていました。

ところがここ半年の間に、その予想が更新されてしまったわけです。

今ではシンギュラリティの到来は2025年頃だろうと予想されています。

つまり、たったのあと数年です。
一気に20年も早まってしまいました。

競争以外で目的を見つけよう

ということで、何が言いたいかと言えば、

人工知能と競争しても、そんなの不毛なので止めましょう!

ということです。

コンピューターが便利になることは良いことです。
コンピューターに負けないとか、人工知能に負けないとか、そういう視野の狭いことを言っていても仕方がありません。

世の中をもっと便利にするために
世の中もっと良くするために

そういう前向きな目的を考えて、
そのために人工知能をどうやって活用するかを考えるべきでしょう。

やれ有休が欲しいだの、やれ残業が多いだの言っておきながら、
人工知能が仕事を代わりにやってくれるのを嘆くのはおかしなことです。

ちょっと冷静になった方が良いかなぁと塾長は思います。

世の中、いろいろなものが加速的に変化していますが、人工知能の話は、あくまでも1例にすぎません。
その1例に過ぎないものに、勝負を挑んで消耗してしまうのは時間の無駄です。

コンピューターは使うもの

人工知能も含めて、コンピューターは道具です。

正しい使い方を学ぶ。

それでよいのではないでしょうか。
大切なのは、コンピューターに追われたり、コンピューターに使われたりしないようにすることです。

これはお金に似ています。

お金の正しい使い方を学ぶことが大切です。
お金に追われたり、お金に使われたりしないことが大切です。

勉強も競争以外を目的にしましょう

人工知能との競争を止めるついでに、勉強で人と競争することも、止めてみたらよいと思います。

自分の点数を、友達と比較したり、親や兄弟と比較したりして、
優越感を覚えたり、劣等感を覚えたりすることがあります。

そういう気持ちの浮き沈みは、はっきり言ってしまうと、時間の無駄です。

気持ちが浮き沈みして落ち着いて勉強できなくなるくらいなら、
嫌な気持になったり、優越感で人の悪口を言うような性格になってしまうくらいなら、
最初から他人と比較しなければよいです。

そもそも偏差値は、他人との比較を抽象化するための数字です。
周りの人間と比較しなくても済むように、偏差値だけ見れば自分の実力の程度が客観的に理解できる、それでよいのです。

それを、わざわざ再びランキングに使ったり、他人と比較してしまったりしたら、話が循環するだけで前に進みません。
それで気持ちが浮き沈みするなんて、本当に意味がなくて、不毛な行為ですね。

しかも少子化で、間もなく高校も大学も、受験競争というものが無くなりますよ。

今年の愛知県の現状として、公立高校で4割、私立高校で6~7割が推薦で入学するようになっています。
おそらく今後も増えるでしょう。

もっといえば、公立高校の定員割れが止まりません。
愛知県の公立高校の定員割れは合計2000人以上で、もう毎年恒例です。

つまり、選ばなければ、もう名前を書くだけで合格します。
大学も同じ状況です。

さらに、勉強が苦手だとしても、コンピューターや人工知能を使えれば、何の問題もありません。
自分の弱点を克服できる手段や方法もまた、たくさんあるのです。

競争とは、数字を計算するルールを作り、その数字で優劣を決めるということです。
そして、数字を計算するルールを決めるときに、数字にならない多くのことを切り捨てます。

要するに、ルールを決められる程度に単純なものほど競争になる、ということです。
そして、そういった数字になりやすい競争ほど、だいたい人工知能に負ける運命にあるのです。

人間同士で競っていても、そんなのは視野が狭いというもの。
もっと大きな変化に飲み込まれる運命にあるのだということを、ちゃんと知っておくことが大切です。

逆に、受験で高揚しても後悔しても、それはごくごく狭い範囲での勝敗にすぎません。
すこし視野を広げれば、勝者もまた、人工知能に負ける運命にあります。

1回や2回の受験で幸先が明るくなるほど、世の中は甘くはないですし、また絶望なんてことも無いですよ。

幸せになったもん勝ち

このように、これから世の中がどんどん変化します。
それは個人の努力で止めることはできません。

ですから、変化を受け入れて、変化にうまく対応していくことが大切です。
その刻、一刻の対応の方が、実は受験よりもはるかに大切です。

競争の時代が終わり、人間が理解できない速さで環境が変化する世界になろうとしています。
競争するルールを決めても、もう次の瞬間には、そのルールが通用しなくなっている、そういう世界になります。

そんな世界の中で生きていくとき、いったい、何を目的にするのでしょうか?

他人と比較するのが無意味なのであれば、結局のところ、

自分にとっての幸せとは何か?

に行きつくのでしょう。
競争をした後で何とかするのではなく、競争の先にある目的を、最初から取りに行った方が早いです。

それは人それぞれに違います。

都会で精神を擦り減らせながら働いている人が、田舎の暮らしに憧れれたり、キャンプ場で不便な生活を楽しむことがあるように、
他人から見て、そんな生活は嫌だと思うような状態でも、また別の人から見たら、羨むような生活だと思われるのです。

親の世代が都会に移り住んできた時代には、田舎暮らしなんて嫌だと言って、みな都会に出て来たのでした。

何を良いと思うのかを判断する基準も価値観も、人それぞれに違います。

ちょっと昔までは、

「合格してから好きなことをやれ。それまでは我慢して勉強だけをやれ。」
「出世してから会社を変えろ。それまでは我慢して言うことを聞け。」
「定年退職後に好きなことをやるから、それまでは我慢して社畜で頑張れ。」

という人が多かったのですが、もうそんな前提はいっさい通用しません。

競争の結果を待つ必要なんてありません。
最初から幸せになるための目的を直接取りに行ってください。

母校を愛しなさい!

めでたく第一志望に合格した人
惜しくも第二志望へ進学した人
志望校を決める過程で、周りから妥協だの、背伸びだの言われた人
ものすごく勉強を頑張って満足した人
あまり努力しなくて、ちょっと後悔している人

人それぞれ、受験には色々な思いや事情や物語があっただろうと思います。

とにかく、そういう色々な過程を乗り越えて、みなさんは4月から進学します。
つまり、進学していく学校には、それだけ皆さんにご縁があったということです。

あとは、入学してから、みなさんが何をするかです。

どこへ進学したかではなく、進学先で何を成したのか。
第何志望に進学したかではなく、これからの生活をどれだけ楽しめるか。

みなさんの新生活の価値は、それで決まります。

良い成績を収めるかもしれませんし、そうでないかもしれません。
しかし、学校の成績は人生において、それほど価値はありません。
仕事をするようになってから学校の成績が問題になる確率は0%です。

ルールの範囲で学生の役割を果たすことは大切ですが、
それさえ守れば、あとは楽しんだもん勝ちだと思います。

人生と同じで、学校生活も、幸せを感じたもん勝ちです。

3年、4年も経てば、進学先の高校や大学を、また卒業することになります。
その時、自分の母校を誇れるかどうかは、みなさんが何をしたかで決まるのです。

だから、これから進学する学校のことを大好きになってください。
すてきな学生生活を、ぜひエンジョイして欲しいと思います。

卒業おめでとう。
みなさんの未来が幸せであることを切に願っております。

サムネイルの画像もAIが作成

今日のブログのサムネイル画像は、人工知能サービスの Stable Diffusion 2 で作成しました。
作成に使ったキーワードは下の7語で、作成時間は20秒ほどでした。

graduation high school happiness hope Japan anime

このブログだけのテーマソングも作ろうとしたのですが、私の知っていた作曲AIが有料化されてしまいました。
また無料の作曲AIが登場したら、作ってみようと思います。

 


進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたります。生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校、菰野高校(三重)

私立高校

愛知高校、中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

第2志望の学校へ進学したらどうなるのか

天文台のイラスト

塾長です。

今日のお話は9割実話です。学校名や人名は仮称に置き換えてあります。

第1話 (入部までの回想)

心臓破りの坂道

今日から一応、高校生だ。
目の前には、長く曲がりくねった急な坂道が、ひたすら続いている。
これを登りきれば、東京科学大学第二高校の門にたどり着ける―――はずである。

自転車のギアを1段、また1段と軽くしていく。
それなのに足がどんどん重くなる。
登れば上るほど勾配がきつくなる。

いっこうに学校にたどり着ける気がしない。

「何なんだ、この坂道は。」

歯を食いしばり、ハンドルを力いっぱい握り、これでもか、というくらい足に力を込める。
まだ4月なのに、額から汗が垂れてくる。

そもそも、この高校には来る予定ではなかった ―――。

公立高校が第一志望だったのに、合格できなかった。
そしで滑り止めとして受験したこの高校に来る羽目になったのだ。

「ああ、なんで通学からして、こんなに辛いんだよ。
これはきっと、受験に失敗した僕への罰なんだ。」

そんなふうに卑屈に考え始めた。
そして、この高校を受験した日のことを思い出した。

あの日は雪で、とても寒かった。
しかし気持ちは落ち着いていて、程よい緊張感で、むしろ心地よかった。
根拠のない自信に満ちていた。
雪のせいで足元が少し滑ったが、そんなジンクスなど全く気にしなかった。

「うちと公立高校の両方に合格したら、どちらに進学しますか?」

そんな面接官からの質問にさえ、

「もちろん、公立高校の方が第一志望なので、そちらに進学します!」

などとキッパリ、正直に回答したっけ ―――。

でも、こんな坂があるなんて、記憶になかったぞ。

ああ、そうか。

あの時は雪だったから、池谷くんのお母さんが一緒に車で送ってくれたんだった。
車内で色々と話をしている内に門の前に到着してしまったから、この坂のことを記憶していなかったのだ。

何はともあれ、きつい坂だ。

僕はもともと体力がない方だ。
中学のマラソン大会は、いつも最後尾のグループだった。

本当にこれから毎日、通学できるのだろうか。
第一、この坂にたどり着いた時点で、既に10Kmも自転車で走ってきているのだ。
完全にくたくただ。

こんな状態の僕なんかが、これから毎日、本当に通学できるのだろうか。
この高校のこと、ほとんど何も知らないまま入学することになってしまったんだな。

なんだか不安ばかり増大して来た。

ここを一緒に受験した池谷くんは、めでたく第一志望に合格した。
池谷くんとは合格発表を一緒に見に行ったっけ。
帰りも一緒だったはずだが、どうやって帰ってきたのか、ほとんど覚えていない。
きっと帰り道はずっと僕に気を遣ってくれていたのだろう。

池谷くんは頭が良いし、いいヤツだし、合格して当然だ。
今頃、あっちはあっちの学校で入学式だろう。

ここ最近、僕の唯一の楽しみといえば、進学祝いに買ってもらった、この自転車だ。
第一志望には合格できなかったけど、それでも買ってもらえた。
受験の失敗に両親が同情したのだろう。それでも嬉しかった。

24段ギアのフル装備。
どんな道もスイスイ走れるマシンだ。
体力は無いが、サイクリングは唯一好きなスポーツだ。

これで通学するなら毎日が楽しいだろうと思っていたのに・・・。

「本当に、何、なんだ、この、坂は。
登校、する、だけで、こんな、に、大変だ、とは、聞いて、ない、ぞ。」

手が痛くなるほど、ドロップハンドルをずっと握りしめている。
ものすごく低い姿勢で、全身の力を足へ伝える。
路面が目の前に迫ってくるようだ。

何とも言えない圧迫感を感じてしょうがない。

「あー、もうっ。」

と、ため息と苛立ちを混ぜたような声を出してしまった。
そして、とうとう自転車から降りてしまった。

これより軽いギアは、もう無いのだ。
もう限界だ、ペダルをこぐ力が出てこない。
そもそも、ここに来るまでに、結構な距離を走ってきたんだ。

ブレーキをぎゅうっと握ったまま、かろうじて自転車を支えて立ち尽くすと、そのままうなだれた。

「ふぅー。」

下を向いたまま深く呼吸をした。
その姿勢のまま、横目でちらっと周りを見てみると、けっこう、みんな自転車から降りている。

あれ。
なぁんだ。

先輩たちにとっても辛い坂らしい。
ならば、このまま自転車を手で押して行っても別におかしくはないか。
冷静に考えてみれば、そりゃそうだな。

少し気が楽になって、顔を上げた。
すると、ちょうど視線の先に、丘の中腹で白く映える校舎が見えた。

あそこがゴールか。
この勾配が、まだまだ100mくらい続くのか。
歩くことにして正解だ。

そう思った矢先、

「あっ。」

思わず声が出た。

景色の中の、ある一点だ。
白い校舎の屋上だ。
直ぐに分かった。

青い空をバックに、眩しく、銀色に輝くドーム。

「まさか、あれは・・・天文台じゃないか!」

そのまま視線が釘付けになった。
坂を歩く生徒たちが次々に横を通り過ぎていく。

そうか、そうか。
なぁんだ、良いこともあるじゃないか。

胸がかーっと熱くなった。
もうゴールしてしまったかのような、清々しい気持ちになってきた。

受験がどうのこうのという記憶が、その瞬間から過去になってしまった。
すっかりどうでも良くなっていた。

あれを使えるんだ!

一生懸命勉強して天文学者になるのが夢だ。
天文学者になって、天文台で毎日観測するんだ。

そのために受験が終わるまで天体観測を我慢して、勉強してきた。
本当に我慢して勉強したんだ。

でも受験は失敗した。
それで夢が遠のいたと思っていた。

そうじゃなかったんだ。
もう、いきなり使えるのだ。

まだ少し息が荒い。
それでも肩を上下させながら、自然と足が動き出した。

もしかしたら、最初から僕はこの高校へ来た方がよかったのかもしれない。
いや、そうなるべくして、僕はこの高校へ来る運命だったのだ。
あの校舎を目指すのだ。

私立高校だから、きっと設備が贅沢なんだろう。
あぁ~、早く中に入ってみたいなぁ。
屈折望遠鏡かな、反射望遠鏡かな。

新しい友達や担任の先生がどんなだろうという想像をすっ飛ばして、今や放課後のことしか考えていない。

あの天文台を使っている部活とか、あるのかな。
レクリエーションの時、さっそく部活のパンフレットをもらいに行こう。

天文部だろうか。
でも、高校では、それ系の部活は「地学部」が多いと聞いたことがある。
天体観測よりも気象や岩石の観察がメインだったらどうしよう。
いや、あんな立派な天文台があるくらいだから、天体観測をやらないわけないでしょっ。

ニヤニヤしながら自転車を押し続けた。
しばらくして、グランドが見え出した。

野球部やラグビー部が朝練をしている。
そういえば、運動部が強くて有名だ。
野球は甲子園、ラグビーは花園に行くくらいの名門校だ。

僕でも、そのくらいは知っているぞ。

「よし!」

と、再び自転車にまたがった。
はやる気持ちから、思いっきりペダルを勢いよく漕ぎ出した。
しかし、やっぱり坂はきつかった。

「だめだ、こりゃ。」

と小声で言うと、10メートルもしないうちに、また自転車から降りてしまった。

「ま、いっか。」

ちょっと恥ずかしいと思ったが、それも一瞬で、周りの生徒と同じように、また歩きだした。

ホームルーム

入学式、新入生歓迎会、そしてクラスで最初のホームルーム。
高校生活で初めてのイベントが目白押しだったが、それらは瞬く間に終わった。

どの生徒たちも、なんとなく教室で、だらだらと歓談していた。
初日からさっさと帰宅してしまうのが物足りないのだろう。

僕も何となく教室に残っていた。

新入生歓迎会で配られた資料を読んでいた。
廊下や中庭から帰宅する生徒たちの話し声が聞こえてきた。

入学式の後の歓迎会、本当に楽しかったなぁ。

応援団の演舞は、ものすごく迫力があった。
運動部が全国レベルだと、応援団も凄いものになるってことなのかな。
あんなの初めて見た。

でも、文化部の紹介はほどんどなかった・・・
やっぱり部室へ直接見に行くしかないかぁ。

余韻に浸りながらパンフレットの部活紹介をパラパラめくっていた。

「あっ」

地学部の紹介ページに目が留まった。
そうか、あの天文台はきっと地学部が使っているんだな。
天文部は無かったし、写真部は写真だけだろうし。

すると突然、後ろの席の須藤が話しかけてきた。

「なぁ、部活どこに入るか決めた?」

須藤はとても気さくで、今朝も向こうから話しかけてきた。

「あー、うん。
地学部にしようかと思ってる。
星を見たりするのが好きだから。」

「へー、そうなんだ。
俺も星を見るの好きだぜ。
俺の家はけっこう山の方だから、星がきれいに見えるんだ。
スバルとかオリオン座とか。今は北斗七星が見やすいな。
けっこう知ってるだろ、俺。」

「あー、いいなぁ。
でも、山の方って、どこから来てるの?」

「倉渕村。知ってる?
まぁ、榛名山に行く途中くらい。
自転車と電車で1時間以上。
2年になったらバイク通学しようかなって思ってる。
この学校、バイク通学ができる数少ない高校だから。」

「へぇ、バイクOKなんだ。初めて知った。
僕の家でも、小さい頃はよく星が見えたんだ。
周りが田んぼだらけだったからね。
でも最近はコンビニとか建物が増えて、だいぶ見えなくなってきたよ。」

「ふーん、都会はいいねぇ。
コンビニなんて、うちの近くには無いよ。
で、どこから通ってるん?」

「僕は前橋から。
ここまで12Km、自転車で1時間くらい。
道がまだよくわからなくて、慣れたらもう少し速く来れると思うんだけど。」

「12Kmなんて、近い方だよ。
俺なんか駅から家まで、帰りはずっと上り坂だぜ。
ま、足が鍛えられていいけどね。
俺はサッカー部に入るからさ、もっと強くならないと。
小学生のころからサッカーやってきて、中学では選抜チームに入ってたんだぜ。
それでサッカーをやりたくて、この高校を単願で受けたんだ、俺。」

「サッカーできるなんて、すごいね。
僕は正直言うと、運動は、あまり得意じゃないんだ。」

「お前、なんか見るからに頭よさそう、勉強してそうだもんな。
もしかして併願か?」

「あぁ・・・まぁ。
実は公立高校を落ちちゃってね・・・
まぁ、ここには天文台があるって知って、今はそれが楽しみだよ。」

「本当に星が好きなんだな。」

あの坂道の途中で、天文台に気が付いてよかった。
もしも気が付かなかったら、きっと、後ろ向きの気持ちのまま教室に来ていただろう。
そしたら、須藤との会話も、こんなに続かなかったかもしれない。

僕は自分から他人に話しかけていけるような人間じゃない。
どちらかというと聞き役だ。
初対面の人とは何を話したらよいかよく分からなくて、いつも新学期は少し緊張する。

でも、須藤とは気軽に話ができた。
須藤は本当に良い奴だ。

なんか、この高校のことが好きになれる気がする。
よし、僕も須藤を見習って、他の奴にも話しかけてみるか。

前の席のやつが窓の外を見ている。

「やあ、確か君は佐橋くんだったかな。
僕は重松、よろしく。」

「よろしく。」

あれ。
あまりこっちを見てくれない。
きっと僕と同じで緊張しているのかな。

「えっと、どこの中学から来たの?」

すると僕の方を一瞬ちらと見て

「北中。」

と答えた。
え。
何で目を逸らすんだろう。
なんか嫌われたのかな。

「レクリエーションは楽しかったね。」

「そうですね。」

「どこか部活に入るのかい?」

「どこにも。」

「あ、じゃあ何か趣味で忙しいとか。」

「・・・別に。」

自分の会話力のなさに焦りつつ、もうそろそろ引き際とも思ってきた。
須藤を見習うどころか、気分が嫌になっていた。

何こいつ!

大人しそうに見えるが、なんか態度がむかつく。
とにかく、これ以上は話しかけない方が良さそうだ。
でも、自分から話しかけた手前、何とも困った。

「おう重松、じゃ、俺はサッカー部見てくるわ。また明日な。」

「あ、うん、また明日。」

須藤のあいさつで救われた。
僕もその勢いに乗じて教室を出た。

「じゃあ、僕もそろそろ行こうかな。」

もちろん地学部へ向かった。

理科室の奥の部屋

あ、ここかな。

”理科実験室が地学部の部室です”

ってパンフレットにあるから、多分ここだよね。
教室と同じ棟で、けっこう近いな。

さっそく実験室の戸に手をかけた ―――

ガラガラ・・・

思ったよりも大きな音がしてしまった。

「す、すみません。地学部の見学に来ました。」

慌てて挨拶をした・・・

しかし返事がない。

そのまま1歩踏み込んで実験室の中を見回したが、誰もいないようだ。
とりあえず、さらに2、3歩ほど中に進んだ。

ひんやりした空気が漂っていた。
あぁ、この冷たい感じ、理科実験室らしい。
理科実験室は、やっぱりいいなぁ。

部屋の隅が少し埃っぽくて、いくつの机や椅子が部屋の隅にまとめられている。
授業ではあまり使ってないのかな。
実験机の並ぶ向こうに、無駄なほど大きな黒板が見える。

少なくとも毎日使っている感じではなさそうだ。

少しすると、奥の方から人の話し声が聞こえてきた。
声の方向を見ると「理科準備室」と書かれたドアがあったので、そのままドアの方へ向かった。
何やら中でワイワイガヤガヤ、楽しそうに話している。

ここが本当の部室なのか。
よし、今度はちゃんと挨拶をして入ろう。

コンコン

「すみません、地学部の見学に来ました。」

そのとたん、部屋の中が静まり返った。
シーンとして、それっきりだ。

意外な反応に、時間の流れだけが存在感を増す。
本当は5秒くらいの間だったのだろうか・・・

ガチャリ

ドアが開くと、その向こうにカマを持った男が立っていた。

え、カマ!?

まったく想定外の景色に、固まるしかなかった。

目と目が合っちゃったけど、どうしよう・・・。

この人、先輩? ・・・だよね。

僕は何をされるんだろう。

しかし数秒もしないうちに、ドアをバタンと閉められてしまった。

何が何だか分からず、立ち尽くすしかなかった。

地学部にカマ?
何で?

部屋の中で何してたんだろう。

やばい、来る部屋を間違えたかもしれない。

「おい、どうするどうする、見学だってよ。」
「え、まじで、もう来たの!?」
「え、新入生?すごいじゃん。」
「男、女?」
「男だったよ。」
「お前、部長だろ、部長が行けよ。」

中から、何やら騒がしい声が聞こえだした。
どうやら、場所は間違っていなかったようだ。

そして再び静かになったと思うと、またドアが開いた。

ガチャリ

「こんにちは。よく来たね。
僕は部長の水前です。」

今度はさっきより少し背の高い先輩だ。
ちらりと振り返って、部屋の中を隠すように続けた。

「あぁ、まぁ、奥は狭くてごちゃごちゃしてるから、実験室で話をしよう。
ちょっと、そこで座って待っててね。」

と言って、再びドアの向こうに行ってしまった。

「あ、はい。よろしくお願いし・・・」

言われた通り待つことにして座っていると

ガラガラガラ・・・

背後から窓の開く音がした。

今度は何!?

振り返ると、リュックを背負った男が、窓から実験室に侵入して来ているではないか!

え、ここは2階のはずなんだけど・・・。

びっくりして、そのまま静観していた。
この人も、先輩?だよね。

窓から部屋に降り立つと同時に、そのリュックの男が話しかけてきた。

「あ、もしかして新入生?
もう見学に来てくれたんだ。
うれしいな。」

「あ、はい・・・。」

唖然としていると

「あ、これ?
これは秘密のショートカット。
この窓から来ると、隣のキャンパスから最短で来れるんだよ。
だから、この窓のカギは絶対に閉めちゃダメだよ。
あと、先生にも内緒ね。
見つかると怒られるから。」

「あ、はい・・・。」

よく見ると爽やかそうな先輩だ。

それはそうと、いったい、ここは2階なのに、どういうワケだろう。
窓の外を少しのぞいてみた。

なるほど、隣の大学の非常階段の手すりに立てば、この窓に足が届くという感じ。
こちらの校舎も壁沿いに配管があって、いざという時には、そこも足場になるようだ。
でも高いところが苦手な人は、ダメだろうな。

「俺は地学部の村山、よろしく。
君は?」

「新入生の重松です。
よろしくお願いします。」

「うん、重松君ね。
で、まだ誰もいなかった?」

「あ、いえ、部長の水前さんから、ここで待つように言われました。」

「あ、そう。
何やってるんだろ。
ちょっと見てくるね。」

そう言って、この人もまた、奥の部屋に消えていってしまった。

「おい、新入生が待ってるぞ。何やってるの?」
「いや、散らかってて片付けようと。」
「でも実験室で待ってるぞ。」
「いいよ、とりあえず、呼んじゃえ。」
「いや、いきなりここは見せられないだろ。」

ガチャリ

ドアがまた開いて人が出てきた。

「やぁ、待たせたね。」

水前さん、村山さん、さっきのカマの先輩と、続いて女の先輩も出てきた。

「やー新人くん、よく来たね~。
ごゆっくり~。
あたしは用事があるから、先に帰るね~。」

最後の女の先輩は、そのまま実験室を出て行ってしまった。

「やあ、さっきは変なところを見せてしまったね。
びっくりした?
僕は永田っていうんだ、よろしく。」

カマの先輩、しゃべれるんだ。

「あ、はい、よろしくお願いします。」

それにしても、この段取りの悪さというか、適当さというか、ダレた感じは何だろう。
歓迎されているのか、いないのか、なんだか微妙な空気だ。

部長の水前さんが話を始めた。

「えー、それで。
僕ら地学部は、地質班、気象班、天文班、それと情報処理班の4つの分野で活動しているよ。
さっき帰っていった野口は情報処理班かな。
あ、彼女だけは高等部3年ね。
うちの大学にそのまま進学するから、まだ余裕があるはずなんだけど、なんかいつも忙しそうで、僕らの間でも謎ですな。
それはさておき、君はどうして地学部に来たんだい?」

「はい、僕は天体観測がしたくて。
中学の時も友達と観測会をやっていました。」

「そうか、すると天文班ってことになるかな。
じゃ、僕と同じだね。」

水前さんからそうに言われて嬉しくなった。
急に期待が膨らんできて、思わず質問してしまった。

「やっぱり天体写真とか撮るんですか?
天文台の望遠鏡を使ったりとか?」

「うん、僕自身も望遠鏡やカメラを持っているからね。
最近はほとんど時間がなくて、やってないけど。
あと、他の班が手薄になってるときは手伝うから、気象にも詳しいよ。」

すると村山さんが話を始めた。

「ねぇ、山とか興味ある?
山は良いよ~。」

「あ、こいつは地質班ってことになってるけど、実際には山岳部がないから地学部に来たっていう感じかな。
山登りのついでに化石を掘りに行く感じだよ。」

すかさず水前さんが説明してくれたので、話がつながった。

「いやいや、ちゃんと化石もやってるって。
この近くは昔の炭坑跡があってね、裏山からは葉っぱの化石も見つかるんだよ。」

「へぇ、そうなんですか。こんな身近なところで化石が採れるんですね。」

村山さんも地学部らしい人で安心した。
少し場に馴染んできた気がする。
そこで、さっきから無性に気になっていることを聞いてみることにした。

「あの、永田先輩は、さっきは何でカマを持ってたんですか?」

「あ、いや、普段は部外者なんて来ないから、怪しい人だったら撃退してやろうと思ってね。
ふふふ・・・」

ケガがなくて良かったぁ・・・ちょっと凍り付いた。

「いやいや、冗談、冗談。
カマは僕の相棒だからさ、何となく持ってただけ。
別に深い意味はないよ。
化石を掘るときにカマは大切なのさ。
これからの季節、山を歩くにも化石を掘るにも草が邪魔だからね。」

永田先輩はどうやら地質班のようだ。

「気象班はいないんですか?」

「あー、えーと、今の部員の中で気象班はいないかな。
ただ、顧問の教授が気象班出身のOBで、何らかの活動は必ずやらされるんだよ。
だから何班でも必ず気象班には駆り出されます。
あ、でも、普段は自分たちの好きな活動をちゃんとやらせてくれるから、安心してね。」

けっこうリーダーシップのある顧問がついているんだな。
色々と積極的に活動してそうだ。
きっと凄いんだろうな。
ということは・・・

「あの、できれば、天文台を見せて欲しいのですが。」

急なお願いとは思った。
でも、やっぱり見たいものは見たい。

すると水前さんは、村山さんや永田さんと目で会話するように視線を移した。
そして僕の顔をうかがいながら口を開いた。

「えーと、天文台の見学ね。
そうだよねぇ、見たいよね。
でも、えーと、僕らは大学2年で、研究室のプレセミナーが始まるから、もうすぐ地学部を引退するんだよ。
だから次期部長と副部長はもう決まっている。
もう少ししたら来るから、ちゃんと紹介するよ。
きっと彼らが親切に対応してくれるだろうから、お楽しみにね。」

さっきの間は何だろうと思ったけど、きっと、もったいぶっているんだろうな。

「はい、楽しみです。」

「あ、だからといって、別に僕らは遊んでるわけじゃないよ。
研究室に行く前に、なんとなく皆で集まることが多くてね。」

なるほど。
要するに、ご隠居さんたちが部室をたまり場にしてるってことか。

和気あいあいとした感じで、楽しそう?

って思えばいいのかな。

しばらくすると、理科実験室に、2人の先輩たちが入ってきた。

ガラガラガラ・・・

「あ、こんちわっす。
今日は奥じゃなくて、ここに集まってるんですね。
おや、もしかして、もう新入生ですか!?」

水前さんが答えた。

「おー安住、待ってたよ。
ちょうどお前らのことを話していたところだ。」

「こんちわっす。
新入生って、今年は早いですね。」

「えーと、こちらが見学に来てくれた新入生の重松くん。
重松くん、こっちが安住くん、次期部長で、こっちが石原くん、次期会計だよ。」

「はい、よろしくお願いします。
パンフレットの部活紹介を見て、見学に来ました。」

すかさず挨拶をすると、石原さんが答えた。

「おー期待の星じゃん!
重松くんね、よろしく。
僕は大学部の1年で、僕らの学年は俺ら2名しかいないんだ。
だから、もう部員が増えると思うと、うれしいね。」

「石原くん、石原くん、まだ見学だよ。
重松くん、まぁ軽い気持ちで見学していってよ。
仮入部期間は色々と他も見てきた方が良いしね。」

安住さんは冷静な人みたいだ。

「安住くん、重松くんが天文台を見学したいそうだよ。」

水前さんが話を進めてくれた。

「あー、天文台ね。
天文台かぁ・・・ってことは、天文班希望なのかな。
さっきは軽い気持ちで、なんて言っちゃったけど、けっこう本命で来てくれたんだね。
うれしいなぁ・・・。
なら天文台を見たい・・・って話になるよね・・・なるほど・・・。」

すると横から石原さんが割って入った。

「うん、天文台はね、仮入部期間が終わって、正式に入部した人だけに見せたいんだよ。
観測機器だからさ、一般公開を気軽に、みたいには行かないからさ。
それまで楽しみにしていてくれ。」

「あ、はい・・・わかりました。」

あからさまに残念な表情が顔に出てしまった。
やっぱり、それが伝わってしまったようだ。

「ま、まぁ、今はカギを持ってないから、どちらにしろ入れないから。
また後日、ちゃんと見学会をするってことで。」

安住さんがフォローするように言ってくれた。

「屋上だけでよければ、明日にでも見学できるよ。
外観だけで良ければ、明日また見に来るかい?
屋上に行けば近くで見られるよ。」

「あ、はい、お願いします。」

「地学部だけなんだ、屋上が使えるのは。
地学部の特権みたいなもんかな。
それって、ちょっとすごいと思わない?」

「あ、そうですよね。
小学校や中学校では、基本的に生徒は屋上に入れませんでした。
言われてみれば、一度も行ったことないです。」

「な、そうだろ。
しかも、天文台の下が準備室になっていて、そこも使えるんだよ。
理科実験室、理科準備室、屋上に天文台。
地学部の使える設備って、けっこう贅沢なんだよ。
ま、そういうワケだから、明日また来て欲しいな。」

「ありがとうございます。それはぜひ、お願いします。」

ちょっとワクワクしてきた。
天文台の中に入れないのは残念だけど、それは後のお楽しみ、ってことで良いかな。

その後、僕は先輩たちの歓談の中心に引っ張り出され、色々と質問攻めになった。

「重松くんはどこから来てるの?」
「いつから星を見てるの?」

通学のこと、受験のこと、星のこと。
色々な話しができた。

そして、あっという間に夕方になってしまった。

「さて、そろそろ解散にしよう。」

とても気さくな先輩たちで楽しかった。

下校時刻になった。

帰りは下り坂。
自転車が自動的に走ってくれる。

とても楽ちんで気分爽快。

明日も楽しみだ。

あとがき

行ってみたら、やってみたら、意外にも最高だった。
そういう人生の方が多いのかもしれません。

どこに行ったかではなく、何をしたか。

目の前に見える景色、あなたの目の前にいる人たち・・・そして今というこの時間。

それらを大切にしてください。
後で、それらがとても大切だったと気が付くでしょう。

 


進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたります。生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校

私立高校

中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

【愛知県版】2023年に向けて中学2年生が考えること

愛知県の公立高校入試制度が変わります

塾長です。

受験も大詰めです。
今朝の名古屋は雪でしたが、私立高校の受験と重ならなくて良かったです。
その私立高校の受験結果も、そろそろ出そろう頃です。

さて、来年の高校受験はどうなるのでしょうか?
1年の見通しを書いておきますので、高校受験の勉強計画で何か迷ったら読んでみてください。

マイペース、新研究、整理と対策

中学2年生のみなさん、
きっと学校から受験勉強の教材を紹介されている頃だと思います。
毎年1月末~2月末までの間に配られます。
その教材の名前は、次のどれかです。

  • マイペース
  • 新研究
  • 整理と対策

これらのうち、どれか1つの案内が学校から配られているでしょう。
植田中や御幸山中では「マイペース」か「新研究」を交互に採用しています。

ちなみに2022年度は、植田中がマイペース、御幸山中が新研究を選択しました。年によります。

そして、この案内が配られたら、

必ず購入しましょう!

重要なので、もう一度。

必ず購入しましょう!!

この教材は、中学校の中で真剣に考えられて選ばれます。
毎年ちゃんと窓口担当の先生が立って、購入の相談にのってくれます。

おすすめの理由

学校から紹介される教材の多くは購入しなくても良いですが、これだけは絶対におすすめです。
その理由は次の通りです。

  • 塾や書店で購入するよりも安価
  • 3年間のまとめが1冊ですむ
  • 教科書や入試の出題範囲を守っており、単元の抜け漏れがない
  • 最新の教科書改訂にも対応している
  • 学校の朝学と連動しやすい
  • 定期テストの実力テスト部分の対策に使いやすい
  • 章構成が分かりやすい(前半の基礎編は1学年10単元と明確)
  • 自宅の受験勉強でやることが明確になる
  • 塾から受験勉強の家庭学習方法をアドバイスしやすい
  • 長年の実績があり、他の教材とは一線を画す品質
  • みんなが持っている

注意点

  • お下がりはダメ(新品を買いましょう)
  • 後から買えない
  • 書店では買えない
  • 日進市の中学校ではあっせんされない
  • 学校で紹介される過去問集は買わない(粗悪品です)

教科書改訂や指導要領の改訂が続きました。
お下がりの教材では、新しい単元や出題傾向に対応できません。
入試対策の教材は最新のものを使うのが鉄則です。

また、夏休みになってから「やっぱり欲しい」と言っても買うことができません。
およそゴールデンウイーク前には在庫が無くなります。
在庫が残っていれば学校から取り寄せてもらえますが、学校の先生のご迷惑になります。
みんなと一緒に購入しましょう。

なお、学校で紹介されるものを全て買う必要はありません。
たとえば公立高校の過去問集が紹介されますが、これはダメな商品です。

高校入試の過去問は東京学参や英俊社のものを書店やネットショップなどで購入しましょう。

もっとも、過去問に着手できるのは夏休みの基礎固めが終わってからです。
後で書きますが、過去問は秋から着手してください。

愛知県の高校受験(2023年1月~3月)

来年から受験方式が変更されます。
まずは情報のソースからまとめていきます。

公立高校の新しい入試制度

以下から公式パンフレットをダウンロードできます(愛知県教育委員 2021/11/17)

パンフレット「令和5(2023)年度入試から公立高校の入試制度(全日制課程)が変わります!」について
https://www.pref.aichi.jp/soshiki/kotogakko/368047.html

今の時点(2022年2月5日)で発表されているのはこれだけです。
より詳しい発表が6月頃にされるようです。

私立高校の入試日程について

入試の方式に大きな違いはありませんが、全体的に日程が早くなります。
以下から公式発表の資料をダウンロードできます(愛知私学協会 2021/11/22)

令和5年度入試 愛知県私立高等学校生徒募集日程等
https://www.aichi-shigaku.gr.jp/file/R05nyushibi-yokoku.pdf

変更のポイント

上記を踏まえて重要なポイントをまとめます。

全体的に入試の日程が早まる!

私立も公立も、今までより10日くらい試験の日程が早くなります
ただし他県に比べて早い日程なのかと言えば、そうでもありません。
たとえば来年度は次のようになります。

2023年度の場合

  • 私立推薦: 1月16日~17日
  • 私立一般: 1月20日~24日
  • 公立推薦: 2月6日
  • 公立一般: 2月22日(学力検査)および24日・27日(面接)

なお、公立高校の面接は実施される高校とされない高校があります
来年度から、面接を実施するか否かは、高校側で個別に決めるようになります。

公立高校の試験回数が1回だけになる!

愛知県の場合は公立高校を2校まで併願できます。
高校がAグループとBグループに分けられていて、それぞれ1校ずつ選択できる制度だからです。
今後も2校を併願できます。

しかし問題は試験の回数です。

今まではAグループとBグループで試験日が異なり、志望校ごとに試験を2回受けていました。
しかし、来年度からは試験が1回にまとめられてしまいます。

つまり学力試験のチャンスが1回しかありません。
1発勝負です。

公立高校の入試がマークシート方式になる!

中京高校のように、これまでもマークシート方式の試験形式を採用していた私立高校はありました。
来年度からは、公立高校の入試もマークシート方式になります。

詳細は6月頃の発表です。

公立高校は合格判定の方式が増える!

これまで3通りの判定方式が、次のように5通りに増えます。
Ⅰ、Ⅱ、Ⅲが従来どおりですが、さらにⅣとⅤが追加されます。

  • Ⅰ 評定得点(90) + 学力検査得点(110) = 200点満点
  • Ⅱ 評定得点(90)×1.5 + 学力検査得点(110) = 245点満点
  • Ⅲ 評定得点(90) + 学力検査得点(110)×1.5 = 255点満点
  •  評定得点(90)×2.0 + 学力検査得点(110) = 290点満点
  •  評定得点(90) + 学力検査得点(110)×2.0 = 310点満点

いわゆる、Ⅰがバランス型、ⅡとⅣが内申重視型、ⅢとⅤが学力重視型の試験タイプです。
ただし、ⅣやⅤが追加されて影響があるのは、ボーダーライン上に並ぶ数パーセントの生徒たちだけのようです。

  • 評定得点   … 中3学年末の通知表 5段評定×9教科×2=90点満点
  • 学力検査得点 … 2月24日の学科試験 22点×5教科=110点満点

なお、どの方式を採用するかは高校側が決めます。
概ね、合格偏差値の高い高校や難関大学への進学率が高い高校ほどⅢやⅤを選択する傾向が強いです。

2学期までが勝負になる!

もっとも影響が大きいのは、試験日程が約10日も早まってしまうことです。

詰め込みの日程がヤバイ!

今年の日程感覚に重ねてみると、そのヤバさが分かります。
特に「学年末テスト」と「私立一般入試」の間を見てください。

2022年(従来の制度)

  • 3学期始業式 1月7日
  • 学年末テスト 1月18日~19日
  • 私立推薦入試 1月26日
  • 私立一般入試 2月1日~3日
  • 中学卒業式  3月3日
  • 公立入試   3月7日~11日

これが来年は

2023年(新しい制度)

  • 3学期始業式 1月6日
  • 私立推薦入試 1月16日~17日
  • 学年末テスト 1月17日~18日 ??
  • 私立一般入試 1月20日~24日
  • 公立推薦入試 2月6日
  • 公立一般入試 2月22日~27日
  • 中学卒業式  3月7日

などと変わります。

半数の生徒は学年末テストを捨てる?

来年からは、私立高校の一般入試には2学期までの内申しか反映されなくなるようです。
日程的に見て、3学期の成績を気にするのは、公立一般入試を受験する生徒のみとなるでしょう。

これまで一般入試であれば、私立も公立も、3学期までの内申点が反映されてきました。
しかし来年からは、3学期の成績が関係するのは、公立一般入試のみとなります。

つまり多くの生徒にとって2学期までの成績が重要になります。

【追記と訂正】

すでに早い受験日程を実施している他県の先生に聞くと、公立高校でも2学期までしか内申に含まれないそうです。
つまり3学期の定期テストは重要ではなく、私立高校の入試対策を完全に優先するそうです。
さらに愛知県内でも情報の早い中学校や塾の先生に聞いてみると、公立高校でも同様のことをおっしゃっています。
愛知県の公立高校入試でも、3学期は内申に含まれなくなる可能性があります。

公立一般入試は修羅の道?

さらに、大きな問題があります。

学年末テストと私立一般入試の日程が近すぎる問題です。
どちらの対策を優先したらよいのでしょうか?

私立が本命の生徒は、学年末テストは捨てればよいです。
どうせ3学期の内申は受験には無関係です。

しかし、公立が本命の生徒はそうはいきません。
私立高校の入試対策も、学年末テストの対策も、両方しっかりする必要があります。
それなのに、この日程間隔。
両立ができるのでしょうか?

一般入試を受験するなら2学期までに教科書を終わらせるべき!

こんな修羅の1月を乗り切るためには、12月までに実力を完成させるしかありません。

要するに2学期までに教科書を全て終わらせます。
遅くとも12月中旬までに教科書を終わらせて、12月下旬には私立の過去問を解きつつ、学年末テストの対策もする、という勉強になるでしょう。

学校の進度に合わせていたら、もう受験どころではないのです。
あるいは、学校の学習スピードが今までよりも早くなるのかもしれません。

そんな感じで、2学期も過酷な期間になりそうです。

するとさらに逆算して、夏までに基礎を固めておかなければ、2学期も乗り越えることができません。

何が何でも夏までに基礎を固めよう!

ということを逆算して考えてくると、もう夏休みまでに、いかに勉強したかで勝負が決まりそうだということです。
2学期に入ってしまうと、勉強がスピードアップして、復習をする余裕などなくなります。

夏休みまでに1年生、2年生、3年1学期の復習をがっちり固めておく必要があります。

今までのように秋から大逆転というのは難しくなるでしょう。

模試の形式がすぐに対応できない!

もう1つ、注意です。

4月から始まる愛知全県模試。

すぐにはマークシート方式に対応できないそうです。
(愛知県からの発表が急だったので、これは仕方がないです。)

おそらく第1回~第3回くらいまで、従来の記述回答形式で実施される見込みです。
マークシートに対応できるのは、おそらく第4回あたりからでしょう。

ちょっと練習不足が心配です。

まとめ

いま中学2年生の諸君は、新しい入試制度で受験に臨みます。

その影響で3学期にはテスト対策も私立入試対策も十分にやる時間が取れません。

2学期は学校の授業が加速して着いていけなくなるリスクがあります。
あるいは12月中旬までに独学で教科書を全て終わらせる必要があります。

12月下旬から冬休み中は、私立の過去問を解きつつ、学年末テストの対策もする、という過酷な勉強になるでしょう。

そんな2学期を乗り切るためには、夏休みまでに基礎固めを完成さておく必要があります。

来年からは、夏期講習が最後の砦になるでしょう。

夏休みは1日10時間、1か月で400時間くらい勉強する必要があるでしょう。
学校でマイペースや新研究を購入し、1学期~夏休みの内に、ガンガンやりつくしておきましょう。

秋になってから「受験対策をして欲しい」とお問い合わせがくることがありますが、来年度はお断りするかもしれません。
基礎固めがお済であればお受けしますが、その時期から対策を考える時点で基礎固めがされてないケースがほとんどです。

秋から逆転するには、知能指数(IQ)125以上(上位5%)くらいでないと、ちょっと無理だと思います。

 

 


進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたります。生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校

私立高校

中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

【高校入試】面接対策の必勝ポイント 良い例と悪い例

面接でこれはアウト

塾長です。

私立高校の推薦入試が迫ってきました。

推薦でも不合格は出る!

推薦とはいえ、ちゃんと学力テストと面接という試験がありますよ。

そして、舐めてかかれば容赦なく落とされますので、気を引き締めて!

推薦の定員が増えてきている代わりに「選抜」の要素も強くなりつつある傾向です。

例えば、学力テストの問題。
最近は一般入試と同じくらいの難易度や問題量で出題するところが増えてきました。
ちょっと昔までは、基礎的な問題だけだったのですが、今は難しい問題も出題されます。

このように、推薦だからと油断して甘い態度でいれば、痛い目を見ます。
ですから面接も手を抜けません。

面接とは何か?

そもそも面接とは何か。

キミは答えられますか?

もしも答えられないのに準備をしているとしたら、それは準備とは呼びません。

さて、高校の立場で考えれば、面接で聴きたいのは大きく2つです。

  • キミの志望動機
  • キミが高校で頑張れる理由

面接とは、この2つのことを高校がキミに確認する「お見合い」です。

「知りたい」のではなく「確認したい」というのがポイントです。

つまり、質問の仕方を色々と変えてみて「証拠」を集めようとします。
ですから質問のバリエーションは多いかもしれません。
しかし、それも全て上の2つの「証拠集め」なのです。

ちなみに「証拠」とは具体例や実体験といったエピソードのことです。

今すぐ志望動機を書き起こそう!

そこで、すぐにやって欲しいのが「志望動機」の確認です。

何よりもまず紙に文章で書き起こしてください!

「ちゃんと考えてますよ!」

という生徒に限って、いざ書かせてみるとボロボロだったりします。

何となくできるように思えても、意外と書けないことに気が付くでしょう。
1時間でも早く危機感を持ってもらえるように、いちはやく紙に書き起こしてください。

その上で、次の事例を参考にして欲しいと思います・・・

事例で学ぼう!どこがダメで何が良いのか考えよう!

いくつか回答例を載せますから、どこがどうダメなのか、逆に何が良いのか、考えてみてください。

例題1 初級

面接官:「どうして当校を志望したのですか?」
生徒A:「はい。体験会に参加した時に、校舎がキレイで、貴校の先輩たちがとても親切に、丁寧に説明してくれたので、感動して受験を決めました。」

好印象な受け答えですが、実は質問に対する答えになっていません。
生徒Aさんには何も加点されません(減点もありません)。

なぜでしょうか?

例題2 中級

面接官:「なぜ推薦で当校を受験しようと思ったのですか?」
生徒B:「はい。自分は勉強が苦手なので一般試験では確実に合格できるか不安でした。そこで学校の先生に相談し、親の勧めもあって、推薦の方が自分に合っていると思うようになったからです。」

ちょっと質問が意地悪なので中級にしました。本当のことを答えているので、誠実な印象です。
しかし、これも生徒Bには加点がありません。減点もされないとは思いますが、もしも普通科であれば減点されるリスクが僅かにあります。

なぜでしょうか?

例題3 中級

面接官:「本校を志望した理由を教えてください。」
生徒C:「あ、は、はい。ぼ、ぼぼ僕は、じ、柔道部を頑張ってきました。き、き貴校の柔道部も、つ、強い、、、あ、県大会で、いつも優勝しているのを、いつも見ていまして、、、えっと、、、ふぅ、、、えっと、、、」
面接官:「ゆっくりでいいですよ。」
生徒C:「はい、ありがとうございます、、、そ、それで最初から志望していたのですが、た、担任の先生から勉強をもっと頑張らないといけないと、言われましたので、えっと、それで、一生懸命に勉強して、なんとか学校の先生から推薦が、もらえるようになって、それで受験できるように、なりました。よ、よろしくお願いします。えっと、、、い、以上です。」

とても緊張してしまったのか、どもったり止まったりしてしまいました。面接官からフォローされて後半は少し流ちょうになりました。
こんなボロボロな受け答えでしたが、ちゃんと生徒Cには加点されました。そして減点はありません。

なぜでしょうか?

何を質問されても、その真意は同じです

上の3題について、どうでしたか?
ちょっと簡単すぎましたかね?

それでは、解説です。

ポイント

もう1度書きますが、面接官が確認したいことは次の2つです。

  • キミの志望動機
  • キミが高校で頑張れる理由

つまり、この2つの情報が回答に含まれていれば加点されます。

例題1の解説 何も言ってないのと同じ

生徒Aの回答には、生徒A自身が何を考えて志望したのかが、全く含まれていません。
いくら高校を褒めても、面接官からしてみれば、生徒A自身のことが何も伝わってきません。

面接官は褒められて悪い気はしませんが、点数をあげたくても、あげようがありません。

幸い減点はありませんから、合格できるか否かは定員次第です。
だれか1人を落とさなければ・・・となったら、少しリスクが出て来ます。

推薦と言っても多くは集団面接です。
質問は2つか、せいぜい3つ。

そんな中で、他の質問で挽回する必要性が出てきてしまいます。

もしも面接官が親切なら

「例えば、具体的に当校の何が良かったですか?」

などと追加の質問をくれます。
そこで挽回しましょう。

逆に追加の質問が無く、ニコニコ和んでスルーされてしまう方が不利ですよ。

例題2の解説 あるある的な失敗

これも例題1と同じです。生徒B自身の志望動機が回答に含まれていません。
回答したのは「きっかけ」でしかなく「動機」ではないからです。

それ以前に、推薦入試が勉強しなくて良いことの言い訳にされてしまったら、高校としては面目丸つぶれです。
勉強の努力が足りないし、それを気づいた後でも努力をしようとしなかった。そんなふうに受け取られてしまったら減点されるリスクさえあります。

一般受験は1点の差で合否が決まります。そういう競争が苦手な人もいます。また5教科の点数には表れない良さが人にはあります。
だから推薦入試のように、多面的に評価できる入試制度があるのです。

確かに一般入試に比べて5教科の点数は大目に見られるかもしれませんが、その代わり、入学後も頑張り続けることや、自分の適性を伸ばし続けることを期待されているのです。

それができるかどうかを質問で確認されているのです。

その期待に応えるような回答になっていませんでした。
もしも面接官が厳しくて、期待を裏切る回答だと受け取られてしまったら減点されます。

例題3の解説 アナウンサーの面接ではありません

生徒Cの回答には、「話し方」と「話した内容」の両方が気になると思います。

もしもこの生徒が「アナウンス学科」とか「接客科」などというコースの面接に挑戦しているのであれば、このような話し方をしてしまったら、まず合格できません。

しかし、少なくとも愛知県にはそのような高校は無いです。

生徒Cは、ちゃんと考えて準備して来たであろう回答を、真面目に思い出しながら最後まで答え切っています。
しかも、高校で頑張りたいこと、つまり「志望動機」を明言しています。
そして、推薦をもらえるように勉強を頑張ったというエピソードは、文武両道で「入学後も頑張れる」という「証拠」になります。

むしろ回答としては完ぺきな内容だったと言えます。

こんなに良い生徒だったら、話し方が少しくらい苦手でも、それも含めて入学してから頑張ってもらえれば良いと思えてしまいます。
話し方のことなど、とても小さな問題です。

ということで、この生徒は間違いなく合格します。

エピソードの話し方

面接のポイントについて、大枠は上に書いた通りで、とてもシンプルです。

続いてエピソード、つまり「証拠」の言い方について、少し細かいポイントです。

過去より未来に重点を置くこと

例えば、こんなことです。

面接官:「あなたの短所は何ですか?」
✖生徒:「やったらやりっぱなしな所です。例えば学校の課題は真面目にやりますが、見直しがおろそかでした。」

これはダメですよね。
短所は過去のこと。それはそれとして「未来をどうしたいのか」も答えましょう。
こんなふうにしてみてください。

面接官:「あなたの短所は何ですか?」
〇生徒:「やったらやりっぱなしな所がありました。例えば学校の課題は真面目にやりますが、見直しがおろそかでした。そこで、やることを絞って、その代わり徹底してやるように心がけています。他の問題集にいろいろ手を出さず、その代わり学校の課題の見直しを繰り返すようにしたら、テストの点数も少し上がりました。中3になってからやり始めたことなので、今後も続けていきたいと思います。」

こんな感じで、自己管理をちゃんとしていて、今後も工夫して頑張っていきます、みたいな未来志向で回答します。

そして、このうような回答を準備することも、前向きに考える練習です。
ある意味、これも勉強です。

自分で自分を褒めないこと

自分について良いことを言うのが自己PRです。しかし、ここに落とし穴があります。

みんな自分で自分を褒めちゃうんですよね。
自己PRでありがちなミスです。

面接官:「あなたの長所は何ですか?」
✖生徒:「はい、明るく活発な所です。私はいつも元気よく挨拶し、学校の行事には何でも積極的に参加してきました。」

自画自賛しても、面接官には信じてはもらえません。
だから学校の先生や友達に褒めてもらいましょう。

面接官:「あなたの長所は何ですか?」
〇生徒:「はい、明るくて元気だと部活の仲間たちから言われます。校内の練習試合でも公式の大会でも変わらずに大きな声で仲間を応援したり、声を掛けたりしました。特に仲間がプレーに失敗したときほど、笑顔を維持して次のプレーに影響が出ないように気を遣いました。」

周囲の人から自分はどのように評価されて来たのか。
それを冷静に受け止めて、あくまでも事実の範囲で語った方が良いです。

固有名詞を使いまくること

面接に限らず、やりがちなのが「抽象的に話す」「ぼんやり話す」というミスです。
変に一般化してしまい、かえって「何を言っているのか分からない」という状況です。

面接官:「中学生活で最も頑張ってきたことを教えてください。」
✖生徒:「はい。私は何でも一生懸命やるようにしてきました。必ずしも努力が実るとは限りませんが、頑張ることが大切だと思っております。」

分かりやすい失敗事例を挙げてみました。
この生徒が中学生活で何をして来たのか、全く分かりませんよね。
でも馬鹿にしてはいられませんよ。この類のミス、みんなけっこうやってます。

エピソードは具体的である方が良いのです。
一般論なんて不要です。

面接官:「中学生活で最も頑張ってきたことを教えてください。」
〇生徒:「はい。1つのことに打ち込んだという特別な活動は特に無いのですが、それでも私は何でも一生懸命やるようにして来ました。例えば今年はコロナ禍で文化祭が無くなり、代わりにクラス内で学習発表をすることになりました。私は授業で使うタブレットの使い方や注意事項について詳しく調べ、それを図や表にまとめて発表しました。例えば学校の「みんなの資料集」というサイトでは、どこにどんな資料があるのか分からなかったり、探し方に慣れていなかったりする友人が多かったからです。発表したら、そのままマニュアルとして全員に配りたいと、先生に褒めてもらいました。」

いつ、どこで、だれが、どのように、何をしたのか。

5W1H

って、よく言うでしょう。それを明確にしましょう。
それが具体的ということです。
固有名詞を使いまくれば、自然にそうなります。

話の大小は関係ありません。
人に誇れるようなエピソードである必要もないです。そういうのが1つも無くても大丈夫。ない方が普通。

ですから、自分が一生懸命やったこと、ちゃんと考えてやったことを、小さなことでも良いので、具体的に、こまかく、はっきりと答えましょう。

自分の言葉で書こう

このように、面接の準備として、まずは文章に書き出してチェックをしていってください。
そして上のような観点で問題があれば、どんどん修正していきましょう。

ただし、必ず自分で書くこと。

たまーに、保護者や家庭教師に書いてもらって、それをただ暗唱しているような人がいます。

何も準備をしていないよりは、まだ「まし」です。
ただ気がかりなのが、自分で書き直していないことです。

自分のことなのに、最後まで人任せ。
人から渡されたものを、ただ覚えるだけ。

そういう人は、必ず何でもかんでも人のせいにします。
ろくな人生を歩みません。

人として、それはやってはいけません。
周囲の大人にしてみたって、そういう過保護は良くないですよ。

そして、鋭い面接官であれば、自分の言葉か他人の言葉かなんて、すぐに見抜いてしまいます。

「対策なのだから、別にいいじゃん。」

そういう人は、まぁそういう価値観なので「論理的には、そうですね。」としか言いようがありません。

でも、高校側からしてみたら、どうでしょう。
たぶん、そういう生徒は絶対に入学して欲しくはないでしょうね。

だって、きっと本人は何も頑張れないだろうし、そういう過保護なタイプの保護者は、きっとクレーマー予備軍です。
関わりたくはないでしょう。

ですから見抜かれてしまえば、確実に落とされます。

対策で人からアドバイスを受けたり添削してもらうのは良いことですよ。
指導やアドバイスならね。
むしろ成長のチャンスなので、どんどんやってください。

でも、丸投げは絶対にダメですよ。

一般入試から面接が消えている!?

※ 例年通り公立高校入試では面接があります。混同しないようにお気を付けください。

私立高校の一般入試では、今年から面接が無くなっているケースが増えています。

もちろんコロナ禍の影響だと思います。

もう一度、よく出願要綱を確認するようにしてください。
また出願方法(受験方法)によっても異なるので気を付けますよう。

もちろん高校から中学校へ連絡がいっているでしょうから、不安ならば担任の先生にも確認してみましょう。

コロナ禍の第3波。
2回目の緊急事態宣言が出されているにもかかわらず、なかなか沈静化してくれません。

すでにメディアは「ウィズ・コロナ」(with コロナ)という言葉を使い始めています。
全部ではありませんが、今後も面接を課さない試験が広がっていくのでしょう。

 


ヒーローズ植田一本松校の進学実績

卒塾生(進路が確定するまで在籍していた生徒)が入学した学校の一覧です。
ちなみに合格実績だけであれば更に多岐・多数にわたりますが、当塾の理念に反するので生徒が入学しなかった学校名は公開しておりません。

国公立大学

名古屋大学、千葉大学、滋賀大学、愛知県立大学、鹿児島大学

私立大学

中央大学、南山大学、名城大学、中京大学、中部大学、愛知淑徳大学、椙山女学園大学、愛知大学、愛知学院大学、愛知東邦大学、同朋大学、帝京大学、藤田保健衛生大学、日本福祉大学

公立高校

菊里高校、名東高校、昭和高校、松陰高校、天白高校、名古屋西高校、熱田高校、緑高校、日進西高校、豊明高校、東郷高校、山田高校、鳴海高校、三好高校、惟信高校、日進高校、守山高校、愛知総合工科高校、愛知商業高校、名古屋商業高校、若宮商業高校、名古屋市工芸高校、桜台高校、名南工業高校

私立高校

中京大中京高校、愛工大名電高校、星城高校、東邦高校、桜花学園高校、東海学園高校、名経高蔵高校、栄徳高校、名古屋女子高校、中部第一高校、名古屋大谷高校、至学館高校、聖カピタニオ高校、享栄高校、菊華高校、黎明高校、愛知みずほ高校、豊田大谷高校、杜若高校、大同高校、愛産大工業高校、愛知工業高校、名古屋工業高校、黎明高校、岡崎城西高校、大垣日大高校

(番外編)学年1位または成績優秀者を輩出した高校

天白高校、日進西高校、愛工大名電高校、名古屋大谷高校

※ 成績優秀者・・・成績が学年トップクラスで、なおかつ卒業生代表などに選ばれた生徒

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

本当に「偏差値の高い高校・大学」へ進学する方が正解か?

塾長です。

今回は学習塾の先生っぽくないことを書きます。時には自由な発想も大事です。

さて、

中学生のみなさん、高校へ進学したいですか?
高校生のみなさん、大学に進学したいですか?

それならば聞きましょう。

「何のために」「なぜ」

進学したいですか?

これ、AO入試や推薦入試の面接で、必ず聞かれます。
しかも、しつこいくらいに、めっちゃめちゃ突っ込まれます。

これからの時代、この理由がとても大切なんです。
今まではテンプレ回答でよかったのですが、どうやら今後は本気みたいです。

そうなってきた背景とは!?

いま世の中で起こっていること。
順に見ていきましょう。

まずは手始めに、Googleの話題から・・・

就活で大卒が無意味になる!? Googleのキャリア認定

College(カレッジ)と呼ばれる、教養を深めるタイプの大学は、これから無くなっていくのかもしれません。
アメリカでは、こんな記事が世間を驚かせています。

Google Has a Plan to Disrupt the College Degree (AUG 19, 2020 by INC.)

この記事によれば、
グーグル社は、就職に役立つ基本スキルを教える専門コースを開設するそうです。
カリキュラムを終えればGoogleが「キャリア証明書」を発行してくれます。

1つのコースは月額約5千円(49ドル)、6か月で卒業できるようです。
つまり5千円×6か月=3万円で1つのキャリア認定が得られます。
さらに奨学金制度もあるそうです。

もちろんGoogleは自社の採用でこの認定書を活用します。
なんと「大卒と同じ価値」で扱うそうです。

さらに、ウォルマート、ベストバイ、インテル、バンクオブアメリカ、Huluといった名だたる大企業が、その制度に参画していくようです。

「大学の学位は多くのアメリカ人にとって手の届かないものであり、経済的安全を確保するために大学の卒業証書を必要とすべきではありません」
「私たちは、アメリカが回復し、再建するのを助けるために、強化された職業プログラムからオンライン教育まで、新しくてアクセス可能な職業訓練ソリューションを必要としています。」
「私たち自身の採用では、これらの新しいキャリア証明書を、関連する職種の4年の学位に相当するものとして扱います。」
(上記記事をGoogle翻訳にて日本語化し、一部を引用)

少なくともアメリカでは今まさに

「大卒が就職に有利」

という従来の価値観が消えつつあるようです。
4年制大学に行く意味を、あらためて考え直す必要があります。

就職が有利になる

もしもそれが進学の理由なら、もはや4年制大学に行くのは得策ではありません。
上のようなスキル認定を受けてしまった方が、安いし速いし有利です。

さて、ここから先は日本の話題に移ります。
さらに破壊的というか根本的な投げかけがあります。

義務教育は小学校までで十分!? 日本のキャリア教育を考える

つい最近、おもしろい動画を見つけました。
N高校政治部の特別授業がYouTubeで公開されていたのです(2020/9/9)

三浦瑠璃先生が顧問で、現職の麻生太郎副総理に色々な質問をしてしまう企画です。

とりあえず見てください。
自分の頭で考えて、自分に置き換えて見て欲しいと思います。

【N高政治部】麻生太郎副総理 特別授業(高校生のための主権者教育)

この動画の注意事項

なお、動画の冒頭にあるように、この動画は特定の立場に立つものではないし、特定の思想を伝えるものでもありません。この動画の趣旨としては、

変化を自分の目でとらえて、自分自身で考えることが大切

ということですので、そのつもりでご覧いただけたらと思います。
動画を見た感想や意見は、見た人がそれぞれに感じて自由に考えて頂ければ結構です。

25:12~34:38 「教育における同調圧力」について

  • 明治維新以降は、みんなで同じことを頑張る教育が大切だった
  • 男性社会だったので、国が教育を義務にしないと女性に同じ教育が与えられなかった
  • しかし今は、色々な人が出て来て、色々な表現ができるようになった
  • 日本は義務教育のレベルは高い一方で、大学は留学の方に魅力がある
  • きちんとした教育は小学校までで十分、例えば因数分解が義務として全員に必要とは思えない
  • 高校でさえ進学率が90%を超える今ならば、中学の進学から自由にしてもかまわない
  • その方が自由な発想で、自分に合った才能を伸ばせる

55:58~59:56 「コロナ騒動で就職が厳しい」状況などについて

  • コロナの騒ぎで世の中は色々変わるだろうが、それで全てがダメになるのではない
  • 新しいタイプの仕事が出てくる、今まで考えられなかった職業が出てくる
  • そのような時代を若い人はむしろ面白いと思って生きて欲しい
  • もちろん宮大工など古い職業も残るし、それがハッキリしてるなら義務教育が邪魔なほど
  • 1つの会社で退職までいくのも1つだが、若いんだから色々やった方が良い
  • マンガやオタク文化はサブカルチャーと言われているが、今やメインカルチャー
  • これから何が期待の職業になるか分からない
  • 置かれた時代は選べないが、生き方は自分で選べる

自由な発想をして良い

この動画でもう1つ面白いのは、発想の柔軟さや大胆さは、年齢に関係ないということですね。
80歳の副総理が

「中学まで義務教育である必要がないんじゃないか」

などとコメントするのは、既存の常識にとらわれない柔軟さと大胆さを感じます。
「え、そんなこと言っちゃうんだ?」的な面白さというか、新鮮さがあります。

もちろん、本当に義務教育が小学校までで十分なのか否かは、皆さんそれぞれの考えに委ねたいと思います。

要は、それくらい自由に考えて良いということです。

自分のキャリアも、自分の気持ちに正直に、自由に挑戦して積み重ねていって欲しいと思います。

そしてもう1つ。

むしろ若い議員の方が、若い人の意見をちゃんと聴いてない(46:25~49:18)。

これも確かにそうですね。

年齢に関する思い込みを外すことも、自由な発想のためには大切です。
同じように、性別や人種についてもそう。
とても示唆に富むコメントです。

自分のキャリアについて、ぜひ自由な発想で考えて欲しいと思います。

もっと評価されるべき「高卒で就職」

もう1つ紹介します。
高校生からのキャリアを積極的に支援する活動です。

アスバシの活動

一般社団法人アスバシ (明日の社会にかける橋)

18歳の選択の質を上げ、若者のチカラで変わる企業と社会

ぜひ上のホームページで活動内容をご覧いただきたいのですが、

  • 高校生インターンシップ
  • 高卒採用のマッチングサポート
  • 企業の枠を超えた4年間のOFF-JT教育
  • 東海若手起業塾
  • 社会イノベーターフォーラム

などなど、色々な活動をされています(2020/9/15確認)

高校生と企業、高校生と社会をどんどん繋げていく活動です。

高校生にとっては、社会のこと、仕事のことが早くからよくわかり、視野もキャリアも広がります。
企業にとっては意識の高い高校生と早い段階から接点が持てますし、地域へ会社を知ってもらうことにもつながるでしょう。

日本でも多様なキャリアの在り方が求められ、すでに色々な取り組みが始まっています。

今どきの学習塾に求められる「進路指導」とは

ここまで、破壊的な話題を紹介してきました。

義務教育とは?
高校受験とは?
大学受験とは?

みんなと同じようにやってきた常識に「なぜ?」が突きつけられています。
既存の教育の仕組みや常識が、これから破壊されていくのでしょうか。
だとすれば学習塾も、今の姿のままでは不要になっていくのかもしれません。

他にも多くのネタがありますが、これ以上の例を挙げてしまうと

「塾長はクビになるの?」

と心配されてしまうので、ここらへんで止めておきます。
(いちおう塾長は社長なのでクビにはならないです、ご心配なく)
その代わりに、そろそろ

「これから塾はどうするのか?」

について書こうと思います。

「学習塾も変化に対応していくぜ!」

っていうお話です。

これまで学習塾と言えば、テスト対策や受験対策というイメージです。
多かれ少なかれ、それは今後も変わらないでしょう。

しかし、明らかに変わってきたのが進路相談の「中身」です。

もはや偏差値で高校や大学のブランドを説く人など、いなくなってきました。
これ、なかなか信じない人も多いのではないでしょうか。
でも事実です。

高校受験の現在

高校のブランド力は「キャリアの提案力」になりつつあります。

多くの中学生が「人生初の受験」を経て入学するのが高校です。
進学ということ自体が、まだよく理解できないし、できたとしても限界があります。
そのため、

  • どんな高校生活が送れるか?
  • どんな将来性が開けるか?

これを提案できている高校が強いです。
そうなると公立高校よりも私立高校の方がアピールが上手で、体制の構築も速いです。
それで必然的に、次のような傾向になってきました。

  • 偏差値だけで高校の高低を単純に語る人が、とても少なくなってきた
  • 私立高校の特長や強みが目立つようになってきた
  • 学校の先生から私立推薦を勧められるケースが増えてきた
  • 「どうしても公立高校」という人が減ってきた(定員割れが拡大)

保護者様から塾に対するご要望もマイルドになりました。

  • しっかりとした基礎学力を身に着けて欲しい
  • 本人が行きたいと思う高校に行かせてやりたい
  • 子供の得手不得手をちゃんと分かって欲しい

「偏差値上げて」「点数上げて」の一辺倒ではなくなってきたということです。
これは明らかに、昔ほど受験競争がシビアではなくなったためでしょう。

私立高校のパンフレットを見れば「進学したくなる理由」が書かれています。
生徒たちが漠然と抱えている不安や疑問。

  • 何のために進学するの?
  • 高校へ行って何するの?
  • 何の役に立つの?

こうした中学生の疑問に、ちゃんと答えられている高校が人気です。
こうした状況を踏まえれば、進路指導では次のことが大切です。

  • 何の勉強がどんな仕事にどう役立つかを説明できること
  • 特に普通科への進学は、できるだけ高卒後の進路希望まで確認しておくこと
  • キャリア意識の高い生徒がいれば、その意思をしっかり汲み取ること

要するに、高校進学の指導で大切になって来たのが、

「早い段階でのキャリア意識」

なのです。かつての受験競争では、

  • 模試の結果で偏差値が高かったから○○高校
  • とにかくよい大学へ行くためには良い高校へ

という漠然とした理由で勉強し、進学していく人が多かったです。
しかし、今後はいなくなっていくことでしょう。

「○○高校に〇人合格!」

みたいな学習塾の合格実績は、次第に価値がなくなっていくのかも知れません。
すると高校受験において、学習塾の役割で大切になることが見えてきます。

世の中を良く知っていて、勉強する理由や仕事やキャリアの実態について、ちゃんと語れること

このような講師や塾長が求められるようになってきました。

大学受験の現在

大学のブランド力は「高い専門性と社会貢献」です。
研究成果を通じて社会に貢献する、それができるレベルの人材を社会に排出する、というのが大学です。
そのため大学は、

  • 自分からテーマを見つけて探求していける人
  • 社会貢献を通じて大学の名誉を上げてくれそうな人

という人材を、できるだけ

「一本釣り」

で獲得しようと模索しています。

アドミッションポリシーで欲しい人材像を宣言しています。
小論文を書かせたり面接をしたりして、その素養を見抜こうとします。
それで次のような入試の傾向になってきました。

  • AO入試や公募推薦の活用が目立ってきた(推薦受験の定員枠の拡大)
  • 私立大学は一般入試の合格水準が上がった(一般受験の定員枠の縮小)
  • 資格や実学を求める人が多くなってきた(資格系の学科が増加)
  • 文理を問わず、グラフや図表を読み解く力、論理的な文章を構築できる力、仮説を立てて問題の解決策を論じられる力、などが問われるようになってきた
  • (オマケ)地元志向が強まってきた(愛知県の地元残留率は全国1位)

お父さんやお母さんが経験してきた大学受験と比べてみてください。
すっかり様変わりしていますよね?
世の中が大卒者に求める能力が、もはや完全に変わってしまったからです。

大卒者に求められるのは、専門知識そのものではありません。
専門性を活かした問題解決力です。

身の回りや世の中に転がっている、大小さまざまな問題。
それらを自ら見つけて解決していく力です。

本当は今までもそうだったのですが、コンピューターやAIの台頭で専門知識の価格が下がってしまったため、ようやく明確になって来たとも言えます。

そもそも仕事とは何であれ、何かしらの社会貢献なわけですから、当たり前と言えば当たり前です。
しかし大卒者には、それが研究レベルで求められるわけです。

つまり、大学に行く価値というのは、

他の人や人工知能には真似できない問題解決力が身につく

ということです。
そのようなモチベーションで推薦の願書や志望理由書を書く必要があるわけです。
だとすれば、大学受験において、学習塾の役割で大切になることが見えてきます。

大学の研究内容まで調べて理解し、大学で取り組みたい研究テーマや大学卒業後の展望などについて、ちゃんと指導できること。

このような講師や塾長が求められるようになってきました。

いやー、正に塾長の出番って感じです!
こういうの得意です!

ぶっちゃけた話し、問題解決をやったことが無い人に、志望理由書や小論文の指導をお願いしても、あまり意味がないでしょう。

例えば、卒業論文や修士論文がヘッポコだった人に指導してもらっても、ちょっと厳しいかもしれません。
学習塾の先生なら、起業した人や、社内の業務改善に取り組んだことがある中堅以上の社員でなければ難しいでしょう。
学校の先生であれば、教育改革を推進したり、主体的に業務改善に取り組んだたりしたような経験を持つ、中堅以上の先生に指導してもらうのが良いと思います。

どのような立場であれ、これからの進路指導には、指導する側にもそれなりのキャリアが必要になってくると思います。

「どこへ行くか」ではなく「何をしたか」

昨今のような変化の激しいときこそ「あたり前」のことが大切になってきます。
進学であれば、

  • 「どこの高校に行ったか」 < 「高校で何をしたか」
  • 「どこの大学に行ったか」 < 「大学で何をしたか」

という至極当然のことを、それこそ真剣に考える時代になってきたわけです。

例えば、コロナ禍で大学のキャンパスに行けないとなれば、なおさら大学に行く意味が問われるというものです。
留学ともなれば、なおさらのことです。
こんな動画は、いかにもそれらしい話題です。

脳科学者の茂木健一郎さんです。

塾長は10年ほど前にお会いしたことがありましたが、とにかく熱い方でした。
本の裏表紙にサインをいただきましたが、そこに添えて頂いたメッセージが

「誠司よ、噴火しろ!ドカーン」

ですからね!
ドカーンと噴火して奮起し、それから間もなくヒーローズを始めてしまったわけですけれども・・・。

そういうわけでして、

就職に有利だから

これはもう、大学へ行く理由にはなりません。
そもそも、問題解決力が問われている時代です。

大学に行く理由が、そんな大雑把でフワフワしている時点で、おかしいと思われます。

何も考えずに進学した

つまり下手をすれば、

論理的に考えて行動できない

と見なされてしまいますよね。
これまでの方が異常だったのだと思います。

高校進学にしろ、大学進学にしろ、そして専門学校への進学にしろ、どこに進路を設定しても、必ず

行ってから何をするか?

を考えることが重要です。

Society 5.0にむけた進路指導

塾長だけが言っていても信ぴょう性が低いので、今度は学習塾のブログを1つご紹介。

個別学習のセルモ 日進西小学校前教室 西尾先生のブログです。

Society 5.0にむけた進路指導

ほらね、僕だけではないでしょ。
西尾先生みたいな立派な先生だって、同じように考えていらっしゃいます。

  • 来るSociety5.0の時代、これまでの学歴モデルが崩壊する
  • 普通科にとらわれず商業科や工業化などの専門学科も検討してみよう
  • 進路指導では、大人は、幅広い選択肢を提示し、子どもは、その中から進路を「自ら選ぶ」のが理想

西尾先生は、

愛知総合工科高校(旧東山工業高校)→日立に就職→東大留学→マイクロソフトに転職→セルモ開校

という異色の経歴をお持ちです。
正に時代の先を行くキャリアで、西尾先生のプロフィールはモデルケースの1つと言えます。

説得力あり過ぎです!

あとがき

ところで余談ですが、上のN高校の動画を見ると、

  • 政治家は現状を変えるのが仕事(役割)
  • 官僚は現状を守るのが仕事(役割)

であることが、あらためて分かりますね。
そう考えると、双方が議論を戦わせるのは世の常であり、どちらが良い悪い、というものではないです。

ただ、任期と選挙がある政治家の方に権力が置かれるのが民主主義というワケですね。
逆に、選挙のない官僚が権力を持ってしまえば、これは独裁主義になるわけで、そうなれば市民の声が届く仕組みがなくなってしまいます。

もちろん日本は民主主義国家ですが、それでも官僚の反対で教育改革が大胆にできない国のようです。
国の仕組みがコロコロ変われば混乱しますから、このへんはバランスなのでしょう。

現政権に関しては、色々な意見や反対・賛成もあるでしょう。
塾長は立場上、生徒の前ではどちらとも言えません。
生徒がそれぞれに考えてくれればよいと思います。

ただ少なくとも、第一線で頑張ってきた人のお話というのは、色々な角度で見るたびに、色々な学びがあると思います。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

中学2年生からの質問 今から受験に備えてやるべきこと

基礎固め≠簡単

塾長です。

中学2年生の女子から質問をもらいました。

今から少しずつ受験に備えて勉強していくとすれば、何がおすすめですか?

はい、お答えします!

当たり前なんだけど、なかなかできない。

みなさんなら何と答えますか?

中2から準備する高校受験の対策ベスト3

  1. 英単語を覚える
  2. 漢字を覚える
  3. 計算練習

これです!
即答でした。
順位は人によりますが、どれも外すことはできません。

なぜですか?

それぞれ次の理由があるからです。

  1. 必須単語が約1200もあって大変だから
  2. 必須漢字が約2100もあって大変だから
  3. 計算できなければ応用もできないから

勉強で最初に克服すべきものとは?

もっと根本的には、次のような勉強の定石があります。

  1. 数が多いもの
  2. 土台になるもの

は早いうちからコツコツやるべし!

英文法は中3から起死回生が可能です。ただし英単語が全く頭に入っていなければ不可能です。
計算ができなければ文章題はおろか、地理の時差計算や理科の濃度や密度の計算もできません。

数が多いものとは?

上でも書きましたが、まず何といっても漢字と英単語です。

これだけで合計3300個以上もあります。
およそ半分は「読める」だけでよく、残り半分は「書ける」までの実力が必要です。

そして漢字の多くは二字熟語で練習しますから、その過程で語彙力もかなり身につきます。

英単語の意味を確認する過程でも同様です。
英語と日本語の意味を比較しながら真面目に取り組めば、漢字と英単語の練習だけでも、かなり読解力が底上げされるでしょう。

同時に、英単語や漢字を練習することは、言葉1つ1つの意味を注意深く捉える練習にもなります。

読解が苦手な子は1つ1つの単語の意味をとらえていません。
1つの文を全体として、何となくボヤンと意味をとらえてしまう癖があります。

この現象は英語の和訳をやらせれば、素人の目にも明らかでしょう。
ご家庭でもお子様にやらせてみてください。
簡単にチェックできます。

こうした悪い癖を直すのは難しいのです。
なぜかというと、言葉1つ1つの意味をとらえる練習をする必要があるからです。

漢字や英単語の練習をすれば、そうした練習のかなりの部分を兼ねることができるでしょう。

「理解しているけど書けない。」

そう言う子の弱点は、たいてい単語力や漢字の力です。
しかも自分が思っているほどは、実は理解できていないものです。

しかも、数が多いので受験生になってから焦ってやっても間に合いきれません。

土台になるものとは?

土台になるものとは、計算力と読解力です。

ただし読解力の方は、漢字力と語彙力さえ身に着いていれば受験生になってからでも起死回生が可能です。
一方、計算力の方は根が深いです。

読解力と計算力のどちらが土台か、と問われたら、私は計算力の方を挙げます。
もちろん、これは究極の選択で、どちらも外すことはできませんよ!

それはともかく、

土台になっているものは、着手が遅れると全ての勉強が遅れます。
影響範囲がとても広いのです。

読解力が極端に低ければ、理科や社会の文章題の意味がくみ取れません。
計算力が無ければ、社会の資料問題、理科の計算問題などが全て解けません。

このように色々なものの基礎になっています。
ですから、そのような勉強は早めに手を付けておく必要があります。

基礎=簡単ではない!

私立高校の推薦入試がメインになってきました。
そのため、最近は夏休みが終わって秋になってから

「受験対策をお願いします!」

と慌てて塾に来られる人が増えてきました。

もちろん、可能な限りのサポートはします。
しかし、例えばお子様のIQが120未満であれば、ご期待に添えるのは難しいです。
何かの特殊能力や事情でも無い限り、普通は難しいです。

さて、多くの人は、

基礎

と聞けば、

簡単

というイメージを持たれるかもしれません。
しかし上で述べてきました通り、

基礎 = 多数 かつ 土台

というのが本当です。

勉強が苦手で嫌いで、そのま秋になってしまった・・・
そのようなお子様は多くの場合、入試では国語の漢字と記述問題、および英語をまるっと捨てる運命になります。

もちろん私立中学のお受験経験者とか、IQが高いとか、何かチートな設定があれば、それこそドラマのような超人的な努力によって奇跡的な挽回を狙うことは可能です。

でもね、それができるのは、たいてい自分ではないのです。私もそうでしたが。
そんなに都合よく一発逆転とはいかないものです。

最近は転生したら最強だったというチート系のアニメや小説が流行っているようですが、それは自分ではありません。

受験の終盤になってから焦っても、間に合いません。

何はともあれ、数が多いものや土台となるものは、学習に時間がかかります。
できるだけ中1からコツコツとやって欲しいです。
着手が遅れると得点力を落とします。

中2から基礎の鍛え直しに気付いた君はラッキーだ!

それでも、中2で気が付けば、まだラッキーです。
ぜんぜん、十分に挽回できます!

頑張ってちょ!!

あとがき 甘い言葉には要注意!?

漢字も英単語もあまり書けない。

中3の夏休みまで勉強らしい努力をせず、盆休み明けに駆け込みで相談してきた親子がありました。

私は上で述べたような現実的な話をして、できることを提案しました。
これまで、同じくらいの成績の生徒たちが、どの高校へどうやって進学して行ったかをお話ししました。
また高校には行ってから目覚めて、化ける生徒もいたことをお話ししました。

高校受験だけではなく、高校へ進学した後も継続して努力する、という話も含めて、勉強の話や実力をつけることの意味を説きました。

しばらくして、その親子は、家庭教師にお世話になることにしたと、わざわざ連絡をしてくれました。
ちょうど同じ時期に、訪問販売で売り込みに来たのだそうです。
それはそれで良い選択をされたと思いました。

しかし気になることを言いました。

その訪問販売員は、私のアドバイスの話をしたら、私の話しを馬鹿にしたそうです。
そして、

「うちなら絶対に成績を上げて、○○高校に行けるようしにますよ!」

と言われたそうです。
それが決め手だったようです。

「松下先生は、絶対に○○高校に合格させるとおっしゃっていただけませんでしたよね。」

「はい。指導経験から嘘偽りなく、言葉を選んでお話ししているつもりです。○○高校はとても努力して来た生徒が合格しています。」

「でも、その家庭教師は『絶対に行ける』と言ってくれたんです。それにかけてみようと思ったんです。」

「わかりました。吉報をお待ちしております。」

私は不安になりました。

後で聞きましたが、成績は上がらず、当初から私と相談していた高校に進学したそうです。
そして教科書改訂にも対応していない、多くの教材を買わされたそうです。

現実を隠して「がんばれ」と非現実的なアドバイスを言う人は、信用してはいけません。
気持ちの良いことを言うのは霊感商法と同じです。

ただし、人生はそれほど単純ではありません。
幸いなことに、その子の人生がそれで狂ってしまったのかと言えば、そんなことはありません。

進学した私立高校で、充実した3年間を送ってくれたようです。

受験の苦い経験は、決して無駄にはならないでしょう。

塾長も高校受験で公立を不合格になって、大学受験でも浪人しました。
受験の失敗くらいで、人生まで失敗してしまうことにはなりません。

そういうことを教えるのも仕事です。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

愛知県の高校入試「公立はチャレンジ志願」の動きが加速!

愛知県公立高校入試倍率

塾長です。

公立高校入試について、今年の出願傾向を考察します。

ちょど愛知県の公立高校入試で出願の修正までが終わりました。これで最終的な倍率が確定したからです。

倍率は愛知県のホームページ「令和2年度入学者選抜の志願状況等」で確認できます(2020/2/25発表)。

このデータや生徒たちの動きから、出願の動向を見ていきましょう。

公立高校の倍率

愛知県の場合、公立高校入試の出願は次の手順で行われます(日付は令和2年の例)。

  1.  2月19~20日 願書の提出
  2.  2月20日21時 倍率の速報
  3.  2月21~25日 志望校の変更
  4.  2月25日21時 最終的な倍率の公表

2月20日の夜に倍率を確認して、不安なら翌日21日に志望校を変更します。例年なら、そこでまた生徒が動いて2~3割の高校は倍率が 0.01~0.02 ほど変動します。

ところが、今年はほとんど変動しませんでした。

つまり「出願後に志望校を変更した生徒がほとんどいなかった」というわけです。

ヒーローズ植田一本松校の生徒が良く出願する高校について、具体的に見てみましょう。

令和2年度の主な公立高校の倍率状況

※ 順番は愛知県の発表順です

高校名 倍率
出願時 最終 (昨年)
愛知商業 1.41 1.41 (1.35)
松陰 2.12 2.12 (2.74)
昭和 1.62 1.62 (2.10)
熱田 2.63 2.63 (2.73)
名南工業 1.89 1.89 (2.22)
日進西 1.86 1.86 (2.01)
長久手 1.70 1.70 (1.67)
1.76 1.76 (2.22)
山田 2.59 2.59 (2.45)
名東 2.11 2.11 (2.43)
若宮商業 1.61 1.61 (2.04)
愛知総合工科 1.93 1.93 (1.53)
名古屋西 2.55 2.55 (2.86)
天白 2.71 2.71 (2.79)
日進 1.01 1.01 (1.13)
東郷 1.79 1.79 (1.97)
菊里 2.42 2.42 (2.63)
名古屋商業 2.17 2.18 (1.93)

安全志向からチャレンジ志向へ

上の表の「出願時」と「最終」の列を見比べてみてください。今年の2月20日と2月25日の比較です。

今年は出願の修正がほとんどありませんでした。

もう少し詳しく見ていきましょう。

出願の変更がほとんど無かった

昨年アップしていた松陰、名南工業、日進西、愛知総合工科も、今年は変化がありませんでした。

名古屋商業(CA)高校だけが唯一、倍率の0.01ポイント増加させましたが、それ以外は数字が動きませんでした。

私立高校の授業料が無償化されますが、これが大きな要因かもしれません。

多くのご家庭にとって、私立も公立も授業料は無料です。

これが安心材料となり、公立高校をのびのびとチャレンジする、志望の意志を固くする、という生徒が増えたのかもしれません。

※高校無償化については、こちらの記事に詳しく書きました。

普通科は倍率ダウン、実学科は倍率アップ

つぎに昨年から変化した部分に注目します。昨年と今年の比較です。

全体的に、普通科の倍率が下がり、専門科の倍率が上がった傾向です。

つまり公立高校は「実学志向」が強まった感じがします。

普通科

昨年度に比べて、普通科の高校はほとんど倍率が下がっています。その原因として考えられるのは

  • 生徒数が減少
  • 私立高校の推薦の割合が増加

ということでしょう。

私立高校は4月から無償化されます(年収制限あり)。そのため私立高校に志願者が流れています。

※高校無償化については、こちらの記事に詳しく書きました。

商業科・総合学科

普通科とは逆に、商業科や総合学科の高校は倍率を上げています。

専門的な環境が必要な学科は、授業料も高くなりがちですが、公立高校なら安心です。愛知総合工科のように自治体のバックアップがあれば、なおさら就職への期待も高まります。

環境面で公立高校は専門学科への期待が高まっていると考えられるでしょう。

授業料に差がなくなってくれば、中身で選ばれるようになる、ということですね。

いかに学力格差を縮めるかが今後の課題

私立高校も公立高校も、授業料が無償化になって良かったです。

ただし注意点があります。

受験日程の関係で、どうしても次のような学力格差が生まれやすいです。

高校に入学するまでの「勉強量」の序列

公立高校 > 私立高校(一般入試) > 私立高校(推薦入試)

とても耳の痛い話です。

あらためて入試日程を見てみましょう(令和2年度の例)。

これが「受験勉強を止める日」です。

  • 1月上旬 私立高校の推薦の内々定
  • 2月6日 私立高校の一般受験の受験日
  • 3月9日 公立高校の受験日

公立高校を受験する生徒に比べて、私立高校の専願なら1カ月、私立高校の推薦なら2か月も早く、受験勉強を止めてしまいます。

具体的には、次の悪影響につながります。

中学3年が1月下旬~2月末までに学ぶこと

国語は教科書の構成上、学年末テストまでに全ての単元が終わります。一方、他の4教科は学年末テストが終わった後でも、まだ重要単元が残っています。

受験が早く終わった生徒たちは、次の単元について勉強不足になりがちです。

  • 英語 後置修飾のまとめ、必須英単語と熟語の残り(約60~70個)
  • 数学 三平方の定理と利用
  • 理科 天体、エネルギーの利用
  • 公民 国際社会

特に英語と数学は、高校に入ってからの基礎力になる単元です。

例えば、数1の「三角比」や数2の「三角関数」が苦手な高校生は、中3の冬の単元からやり直した方が良いかもしれませんよ。

私立高校が本命でも卒業まで勉強を続けるべし!

「世の中科」や「情報編集力」で有名な藤原和博先生によれば、

知識7割、思考3割

なんだそうです。ロボットや人工知能が発達する未来でも、人間にとって知識が大切であることには変わりません。

これまでの「詰め込み教育」が

知識9割、思考1割

だったとすれば、それが教育改革で大幅に見直されて、

知識7割、思考3割

に変わっていきます。大幅に改革しても、たった2割しか変わりません。要するに、

人間は知識が無ければ考えることができない!

ってことです。時代がどうなろうと、これは変わらないってことです。

そして、義務教育は考えるのに必要な「最低限の知識」を学ぶ期間です。

時間のある学生のうちに、できるだけ知識を詰め込んでおきましょう。大人になってから学ぶには、お金と時間がかかって大変ですよ。今のうちに学んでおくことです。

ちなみに、うちの教室では、私立推薦で合格を決めた生徒たちも、まだ自習に来てますよ。

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

愛知県で良かった。私立高校の無償化が大幅に拡大!

家計簿でニコニコお母さんのイラスト

塾長です。

2020/1/31に嬉しいニュースがありました。愛知県は恵まれていますね。

私立高「無償」世帯拡大へ 愛知県、年収720万未満対象に」(中日新聞

もともと愛知県は独自に助成を行い、全国より先駆けて私立高校の無償化に取り組んできました。来年度からやっと国の助成がそのレベルに追いつきました。そしたら、愛知県は更に対象を拡大することにしたのです。
そして国は入学金の補助はありませんが、愛知県は20万円まで補助され、その対象も今回は同様に拡大されます。

常に全国の先を行く高校の無償化。それが愛知県ですね!

そこで1月10日に書いたブログを更新しました。

知っておきたい高校の授業料と無償化の実際(愛知県用 改定版)

具体的に誰に何がどうなったのかは、上記をご覧くださいませ。
ただし愛知県の県議会で予算が通るのはこれから。あくまでも予算案の段階でニュースになりました。つまり具体的な金額はこれから決まります。上記ブログの更新では推測額を青色表示にしました。

現場からは以上です。

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

知っておきたい高校の授業料と無償化の実際(愛知県用 改定版)

家計簿をつけるお母さんのイラスト

塾長です。

2020年4月から高校の無償化が拡大します。申し込みは高校を通じて行ってくださいね。
実は1年前にも「同じテーマの記事」を書きました。そちらは古いので、こちらをご参照ください。

※ 2020/2/3 に記事を修正しました。愛知県の補助金が拡大されたのを反映しました。

主な変更差分

2020年4月からの改正ポイントをまとめると、次のようになります。

  • 愛知県では、今まで授業料の補助が手薄だった世帯年収350~720万円の層も私立高校が無償化される
  • 愛知県では、今まで入学金の補助が手薄だった世帯年収350~720万円の層も私立高校が無償化される
  • 国が一律に支援するため、世帯年収590万円までは都道府県による支援格差が是正される

上記の条件に当てはまらないご家庭にとっては、大きな変更はありません。総じて、

年収720万円未満までなら一律に私立高校まで実質無償化!+入学金20万円まで補助

と考えればよいでしょう。

ただし月額33,000円よりも授業料が高い私立高校は、その差額分の自己負担が必要です。これは今まで通りです。
また年収720~910万円のご家庭で私立高校に通う場合は一部が自己負担になり、年収910万円以上では補助金の対象外です。これも今まで通りです。

この報道のインパクトは大きかったです。

県からの補助金拡大のニュースがあったのは2020/1/31でした。残念ながら、私立高校の願書を提出した後でした。つまり来年からは私立高校の志願者がさらに増えるでしょう。例えば少し通学に不便な公立高校などは、倍率が1倍を切って全員合格ということも出てきそうです。

さて、高校の授業料と補助金について、詳細にまとめます。1年前からの差分は赤で示しました。

高校の授業料(全日制)

ご存知、高校は義務教育ではないため、授業料を支払う必要があります。

高校の入学以降で必要になるお金は、受験料、入学金、授業料、PTA会費、施設費などの他、制服代や文房具代、教材費などがあります。
中でも大きな金額を占めるのが、入学金と授業料です。主にこの2つが補助の対象です。

もしも何も補助金が無かった場合、高校の授業料は、だいたい次の表のとおりです。

愛知の県立高校
入学金 授業料(月)
5,650円 9,900円
愛知の私立高校
入学金 授業料(月)
200,000円前後 30,000~40,000円

※私立高校の授業料は全国平均で年間約40万円と言われています

何が減免される?

現状、国や自治体などから受けられる主な支援は次の種類があります。
多くの人にとって公立高校および私立高校が実質無料、または減免となります。
※世帯年収によって補助金が変わり、約910万円以上は対象外です。

  1. 消費税の免除(高校に限らず学校全般)
    ・・・そもそも学校の授業料には消費税がかかりません
  2. 国の「就学支援金」
    ・・・国から受けられる授業料の補助(金額は所得による)
  3. 愛知県の「入学料補助金」
    ・・・愛知県から受けられる授業料の補助(金額は所得による)
  4. 愛知県の「授業料軽減補助金」
    ・・・愛知県から受けられる授業料の補助(金額は所得による)
  5. 高校独自の助成制度
    ・・・各高校が独自に用意した特待制度など(学校による)
  6. 国の「高校生等奨学給付金」
    ・・・授業料以外も支援する給付金(生活保護・非課税の世帯のみ)

※ 国は「支援金」、県は「補助金」と呼びますが、ブログの本文中では便宜上「補助金」で統一します。

いくら減免される?

国からは授業料について支援金があります。2019年12月20日に閣議決定されました。
愛知県からは入学金と授業料について補助金の拡大がありました。2020年1月31日に発表されました。
両方を併用することができ、合計金額が実質的な補助金になります。

入学金の減免額
世帯年収 県の補助金
350万円未満程度 200,000円
350万円~720万円未満程度 200,000
720万円~840万円未満程度 100,000
840万円以上程度 0円
授業料の減免額(月額)
世帯年収 国の支援金 県の補助金 減免の合計額
270万円未満程度 33,000 200 33,200
270万円~350万円未満程度 33,000 200 33,200
350万円~590万円未満程度 33,000 200 33,200
590万円~720万円未満程度 9,900円 23,300 33,200
720万円~840万円未満程度 9,900円 11,700 21,600
840万円~910万円未満程度 9,900円 0円 9,900円

赤い表示は改訂された部分(確定部分)
青い表示予想です(まだ報道が無いので不明)
※ 黒い通常の表示は昨年度から変更がないと仮定した値
世帯年収の算定方法が地方税の「所得割額」から「課税所得」に変更されました
※ 実際に高校へ支払った額が上限になります(差益が出ることはありません)

愛知県の発表はこれからか?

国が助成拡大を発表した2019年12月以降では、2020年1月31日に「年収720万円未満まで無償化」の報道がありました。しかし県議会で正式に予算が通るのはその後なので、具体的な金額の報道がまだありません。ですから愛知県からは何も正式な発表がありません。そのため2019年9月に愛知県が発表した水準から変更がないものと仮定するしかありません。

2020年2月の内に、また発表があるでしょう。少なくとも高校のホームページやパンフレットに同封されていた資料よりは多い補助機がもらえます。くれぐれも今後の報道や高校からの説明や高校から受け取る資料などをご確認くださいませ。

その上で、上表の青色のように予想しました。理由は次のとおりです。

国からの補助金の上限額は年間39万6,000円と決まりました。これを12カ月で割ると33,000円/月になります。これは愛知県が昨年まで基準にしていた33,200円/月に近い金額です。愛知県はこの基準額を引き上げるのか否か、まだ分かりませんので、現状維持を仮定しました。
ですから変更があるとしても数百円/月くらいだろうと予想しました。
また720万円~840万円未満の世帯がもっとも予想が難しいのですが、840万円~910万円未満の世帯に変化がないと仮定すれば、590万円~720万円未満の世帯との中間値くらいになるのが慣例です。
以上から、上記の青地のような推測をしました。あくまでも推測ですよ。

なお、申請用紙のフォーマットなど細かい手順も変更されるでしょうから、高校側の説明によく耳を傾けて注意してください(手続きは高校で行います)。

いつ、どうやって補助される?

ご家庭に現金が支給されたり口座に補助金が振り込まれるわけではありません。
あくまで高校に支払う時に減免される仕組みです。

そして実は、入学時から減免されるわけではありません。
少し遅れてから補助されます。
特に入学前は、入学金と授業料をいったん支払う必要があります。

手続きの流れ

助成金も補助金も申請しなければ得られません。

高校の入学手続き(4月)のときに、申請書に課税証明書(所得証明書)などを添えて高校へ提出します。
課税証明書は区役所や市役所で発行してもらいます。

この申請書を提出した後で減免される金額が決定されます。

いったん支払って、後から清算

入学した4月の時点では、まだ減免額が決定されていません。
そのため、いったん入学金や授業料を支払っておかなくてはなりません。
そして次に支払う時に、納めすぎた分が相殺された形で学校から請求されます(学校によっては請求が0円か、または過剰分が返還されます)。

あとがき

高校の授業料を減免する制度は、民主党政権時代に国会で「高校無償化」が議論され2010年度から始まりました。年収制限はあるものの、ほとんどの人にとって公立高校であれば授業料は無償になりました。私立高校も半額くらい減免されることになりましたが、その時はまだ無償にまで手が届いていませんでした。

それから私立高校の無償化まで支援枠を広げるよう訴える運動が続きました。自民党と公明党の連立政権に変わっても国会で議論が続きました。教育の機会に格差があってはならないという議論です。公立高校と私立高校の授業料の格差を、公的にどのように埋められるのか。しばらくは地方自治体の裁量で埋めることになりました。その結果、都道府県による格差が指摘されるようになりました。

愛知県は私学協会やNPOアスクネットを通じた市民活動などが盛んなこともあり、早くから独自に助成拡大に取り組み、他県よりも一足先に、私立高校無償化を実現しつつありました。

2016年12月、国が進める「人生100年時代構想会議」の中間報告で「私立高校の実質無償化」が盛り込まれました。
2019年1月の国会の施政方針演説で、また2019年12月13日の内外情勢調査会全国懇談会で、安倍首相は「来年4月から、公立高校だけでなく、私立高校も実質無償化を実現します」と明言しました。
2019年12月20日に令和2年度政府予算案が閣議決定され、同日中に萩生田光一文部科学大臣が記者会見を行い、今回の私立高校無償化を正式に発表しました。
2020年1月31日に愛知県の無償化が年収720万円程度まで拡大されるニュースがありました(中日新聞)

高校までの学習をしっかり行えば、多くの職場でスタートラインには立てます。
何かの専門性を高めるにしても、専門書を読んだり調べたりすることはできるでしょう。

スタートラインに立つまでの教育を無償化することには大賛成です。税の使い方は難しいですが、教育は守ってほしいですね

そして次に問題になるのは、生きがいや目的意識を持って、本人が一生懸命にやれるかどうか。

今後は「モチベーション格差」の時代がやってきます。

 


名古屋市天白区の植田で塾を探すなら、個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

対数関数 log で1カ月悩んだ高校生が15分の解説でスッキリした話し

対数関数が分からないと悩む学生の絵

塾長です。

高校2年生の数Ⅱでは、対数関数で混乱する生徒が多いです。$ \log_3{\frac{1}{3}}=-1 $ とか $ y=\log_3{x} $ とかです。対数関数は独学ではなかなか理解できない単元の1つです。

そういえば数年前、天白高校の男の子も悩んでいました。しかも1か月間も。あの時は、私が15分説明しただけでスッキリしてくれました。ちょっとコツがあるんですよね。まぁ何がコツかは生徒それぞれなのですが。

そこで今回は、その15分で説明した内容を書きます。
とは言え、文章にすると、けっこうな量になってしまいました。初学者は15分では読めないかもしれません。やっぱり授業はライブの方が効率が良いですね。

対数関数の意味が分からない

数学Ⅱで登場する新しい関数といえば、三角関数指数関数対数関数
中でも対数関数で混乱する生徒が毎年多いです。

この関数だけが全く新しい考え方をしているように思えるからでます。それで、

「はぁ? だから何? 何がうれしいの?」
「いきなり、いったい何なの?」

という反応になります。怒りすら覚えます。
そういう時は、いきなり対数関数の性質やグラフを云々ではなく、まず

対数関数で何がしたいのか

を説明した方が良いです。

数学で分からなくなったら「何がしたいのか?」をとらえる

新しい単元に入ったら、まず目的を共有します。
それができないのに説明しても頭に入りません。

一方、教科書では指数関数を学んでから対数関数を学びます。その流れで

対数関数は指数関数の逆関数である!」

などと端的に書かれています。
数学の好きな人には「簡潔で美しい」と飲みこめるのでしょうが、一般の人には味が濃すぎて喉を通りません。
初学者には難しい説明ですね。

同じ意味でも、もっとかみ砕いて

「対数関数 $y=\log_{n}{}x$nは、xを『nの〇乗』で言い直す関数です。」

と考えた方が解りやすいです。
さらに、それがどういうことなのか、いくつか具体的に経験して納得するのが良いでしょう。

  • 直ぐに具体例を書き出してみる
  • 何かを当てはめてやってみる

それが理解の近道です。

対数関数は「何桁の数か」を調べる関数

いくら難しい「対数関数」と言えども「関数」です。自動販売機と一緒です。

  • 自動販売機: 「ボタンを押せば、ジュースが出てくる」
  • 関数   : 「xを決めたらyが決まる

という仕組みです。

  • 「ボタンがx、ジュースがy」
  • xが原因、yが結果

くらいに考えればOKです。この大枠は関数が何であろうと一緒です。
そこで、まず、なにか新しい関数が出てきたら「xの意味とyの意味」を押さえましょう。

ここで先に対数関数の「感覚」を身に着けてもらうために、しばらくの間は $ y=\log_{10}{x} $ だけに話を絞ります。もちろんその後で $ y=\log_{2}{x} $ や $ y=\log_{3}{x} $ などの話しもします。

対数関数 $ y=\log_{10}{x} $ の意味

対数関数 $ y=\log_{10}{x} $ は、xに正の実数を入れると、それが「10の何乗か」を答えてくれる関数です。

  • 対数関数: 「xが実数、yが ”10の何乗” 」

仕組みとか計算方法とか、とりあえず細かい話は横に置いておきましょう。
とにかく対数関数はxを決めるとyは「〇乗」を表す値になります。
つまり、

$ y=\log_{10}{x} $ の$x$ に $1000=10^3$ を代入すると $y=3$ になります。

$ y=\log_{10}{1000}=3 $

そして実は、これで「何桁の数か」も分かります。

具体的に並べれば、

$10^1=10$ は2桁の数
$10^2=1000$ は3桁の数
$10^3=1000$ は4桁の数
$10^4=10000$ は5桁の数
・・・
$10^y=100 \dots 0$ は(y+1)桁の数

と考えられるからです。つまり、次のことが分かる関数です。

$ y=\log_{10}{x} $

  • $x$ は $(y+1)$ 桁の数
  • $x$ は $10$ の $y$ 乗

桁数を知って何に利用する?

物理や化学では、桁数を求める計算をよく使います。極端に大きな数や極端に小さな数を扱うからです。
たとえば炭素12グラムに含まれる炭素原子の数は$6.02 \times 10^{23}$個などと言われます。

602000000000000000000000個です。

こうなると

6020839862345984129123223個 だろうが、
602010000000000000531000個 だろうが、

ほとんど同じです。数が多すぎて原子を1つ1つ数える人はいないですし、数えたところでその数字の利用価値はないです。そんな細かい数字の正確さよりも「24桁の数」というサイズ感の方が重要です。
酸やアルカリの強さを計算するときや、電波で通信したりコンピューターの性能を表すときなんかもそうです。
大きすぎる数や小さすぎる数を扱う時、桁数を知ることがまず重要になってきます。

そういう時に対数関数が良く使われます。

あらゆる数を「10の〇乗」で表したらどうなるか?

突然ですが、もしも

「指数でしか数字を理解できない」

そんな宇宙人がいたらどうでしょう。彼らの宇宙語は、いったいどんな数でしょうか?

その翻訳には対数関数が使えます。私たちが日常使っている数を「10の何乗か」つまり「指数」に言い換えられるからです。さっそく翻訳に取り掛かりましょう。

$1=10^0 ⇔ \log_{10}{1}=0  \Longrightarrow  1 は宇宙語で0$
$10=10^1 ⇔ \log_{10}{10}=1  \Longrightarrow 10 は宇宙語で1$
$100=10^2 ⇔ \log_{10}{100}=2  \Longrightarrow 100 宇宙語で2$
$1000=10^3 ⇔ \log_{10}{1000}=3  \Longrightarrow 1000 宇宙語で3$

こんな感じでしょう。
それなら、例えば次の場合はどうでしょう?

$500=10^{?} ⇔ \log_{10}{500}=?  \Longrightarrow 500 は宇宙語で?$

100 < 500 < 1000
ですから、
$ log_{10}{100} < log_{10}{500} < log_{10}{1000} $
$ log_{10}{10^2} < log_{10}{500} < log_{10}{10^3} $
$ 2 < log_{10}{500} < 3 $
となって、おそらく

$ 500=10^{2.???}  \Longrightarrow  500 は宇宙語で2と3の間の数?$

となりそうです。
しかし、これ以上は計算(翻訳)ができません。

どうしましょう?

ちなみに

「ちょうど100と1000の間だから$10^{2.5}$ かな?」

と思う方がいるかもしれません。
ナイスチャレンジ!ですが、残念ながら違います。

これは、逆に $10^{2.5}$ の値を確認すればわかります。
電卓で計算できますから、ちょっとやってみましょう。
電卓で $\sqrt{10}=3.162 \dots$ と計算できますから、これと指数の法則を使って確かめてみます。

$10^{2.5}=10^{(2+\frac{1}{2})}=10^{2}\times 10^{\frac{1}{2}} = 100\sqrt{10} = 100 \times 3.162 \dots = 316.2 \dots$
よって
$10^{2.5} = 316.2 \dots$
となりました。
500 よりも小さい数ですね。ということは、少なくとも、

$ 10^{2.5} < 500 $
$ 2.5 < log_{10}{500} < 3 $

ということになりました。先程よりは範囲を絞れましたが、まだよくわかりません。
実は、さらに $ \log_{10}{500} $ をもっと正確に計算する方法があります。

常用対数表

数Ⅱの教科書や参考書の巻末、あるいはセンター試験の問題冊子の巻末などに「常用対数表」が載っています。
常用対数表は「10の何乗か」が分かる一覧表です。
普通は 1.00~9.99 までの数が、それぞれ10の何乗か載っています。
つまり、

$y=\log_{10}{x}, (1.00 \leqq x \leqq 9.99)$ (x は0.01刻み)

についてyの値が小数第4位までズラリと並んでいます。その表を使えば近似の計算ができます。

それでは、指数の法則を思い出しながら500 が10の何乗か計算してみましょう。
常用対数表で見ると

$y=\log_{10}{5}=0.6990\dots$
つまり
$5=10^{0.6990\dots}$
です。これを利用して、

$500=100 \times 5 = 10^2 \times 5 =10^2 \times 10^{0.6990\dots} = 10^{(2+0.6990\dots)} = 10^{2.6990 \dots}$

よって500の場合は次のようになります。

$500=10^{2.6990\dots}$
$\log_{10}{500}=\log_{10}{10^{2.6990\dots}}=2.6990\dots$

一般に、この数は無理数になります。終わりのない小数になります。
他の数についても同様です。

たとえば 713 ならば、
常用対数表から $\log_{10}{7.13} = 0.8531\dots   \Longrightarrow  7.13=10^{0.8531 \dots}$
$713=100 \times 7.13 = 10^2 \times 10^{0.8531 \dots} =10^2 \times 10^{0.8531\dots} = 10^{(2+0.8531\dots)} = 10^{2.8531 \dots}$
よって
$713=10^{2.8531\dots}$
$\log_{10}{713}=2.8531\dots$

などと求められます。他にも、

$3=10^{0.4771\dots}$
$11=10^{1.0414\dots}$
$59=10^{1.7709\dots}$
$500=10^{2.6990\dots}$
$713=10^{2.8531\dots}$
$1280=10^{3.1072\dots}$
・・・

そして、10のn乗の数は(n+1)桁の数でした。そう考えれば、

$3=10^{0.4771\dots}  \Longrightarrow  $ 3 は約1.4771桁の数
$11=10^{1.0414\dots}  \Longrightarrow  $ 11は約2.0414桁の数
$59=10^{1.7709\dots}  \Longrightarrow  $ 59 は約2.7709桁の数
$500=10^{2.6990\dots}  \Longrightarrow  $ 500は約3.6990桁の数
$713=10^{2.8531\dots}  \Longrightarrow  $ 713 は約3.8531桁の数
$1280=10^{3.1072\dots}  \Longrightarrow  $ 1280は約3.1072桁の数
・・・

この様に対数関数はどんな数でも全て「10の〇乗」で表せますし、「〇桁」とも表せます。
(ただし後でやりますが正の実数に限ります)。

計算サイト

余談ですが、常用対数表の代わりにコンピューターを使えば速いです。
カシオの「ke!san」という神サイトが有名です
https://keisan.casio.jp/exec/system/1260332465

対数関数 $ y=\log_{10}{x} $ でやりたいこと

対数関数は「正の数」を「指数だけの表現」に言い直す関数ということが分かりました。

それを式で書くと、次のようになります。

$ y=\log_{10}{x} $

  • $x$ は $(y+1)$ 桁の数
  • $x$ は $10$ の $y$ 乗

さて、指数でしか数を数えられない宇宙人の話しでした。
どうやらは彼らは、日常的に小数を使うようです。しかも無理数です。
もっとも無理数をどうやって読み上げるのかは不明ですが。

さて、次に対数関数をもうすこし一般化します。

対数関数 $ y=\log_{n}{x} $ の意味

今度は対数関数 $ y=\log_n{x} $ について考えます。 $ y=\log_{10}{x} $ ではありません。 $ y=\log_n{x} $ です。

用語

その前に用語を先に説明します。その方が後々の説明で困りません。

関数 $ y=\log_n{x} $ について、

  • のことを「真数(しんすう)」と呼びます
  • のことを「(てい)」と呼びます
  • 特に $n=10$ のときの $\log_{10}{x}$ を「常用対数」と呼びます

n進数

これまで見たように指数と桁数の関係は

(指数+1)桁

ということが分かりました。ただし、これは私たちが日常使っている「10進数」での話です。
高1の「数A」や「情報」という科目で「n進法」または「n進数」というのを習ったことがあるでしょう。
数の表し方は10進数だけではありません。他にも色々あることを学びました。

あらためて、普通の数を「10進数」と言います。$100 \times 10 = 1000$のように10倍すると桁が上がります。
お馴染みのように10進数の世界では、数を次のように数えますね。

$0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, $
$11, 12, 13, 14, 15, 16, 17, 18, 19, 20, \dots$

10進数では10ごとに桁が繰り上がります。そのため各位の数には0~9の数しか使いません

一方で例えば、2倍すると桁が上がるような数を2進数といいます。
2進数の世界では次のように数を数えます。

$0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, $
$1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011, 10100, \dots$

2進数では2ごとに桁が繰り上がります。そのため各位の数には0~1の数しか使いません
しかも10進数に比べて、桁の上がり方が速いです。

それでは、2進数で表した数の場合、指数と桁数の関係はどうなっているのでしょうか?

2進数の例

上で見たように、例えば2進数の $1011$ とは10進数の11のことです。
詳細は数Aや情報に譲りますが、2進数を10進数へ直す計算は以下の通りです。

$1010_{(2)}=1\times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0=11_{(10)}$

このように2進数の世界で4桁の数は、10進数の世界ではたったの2桁です。
同じ数でも「表し方が何進数か」で「桁」が変わってしまいます。

そして2進数で表した数の $y$ 桁目の数は「$2^{(y-1)}$」の係数になっていました。

$2^0=1_{(2)}$ は2桁の数
$2^1=10_{(2)}$ は2桁の数
$2^2=100_{(2)}$ は3桁の数
$2^3=1000_{(2)}$ は4桁の数
$2^4=10000_{(2)}$ は5桁の数
・・・
$2^y=100 \dots 0_{(2)}$ は(y+1)桁の数

2進数以外でも同様です。
つまり、たとえ何進数であろうと次のことが言えます。

  • 10進数の世界: $10^y$ は $(y+1)$桁の数
  • 2進数の世界: $2^y$ は $(y+1)$桁の数
  • n進数の世界: $n^y$ は $(y+1)$桁の数

n進数の桁数

上の考察を一般化しましょう。

$n^0=1_{(n)}$ はn進数で1桁の数
$n^1=10_{(n)}$ はn進数で2桁の数
$n^2=1000_{(n)}$ はn進数で3桁の数
$n^3=1000_{(n)}$ はn進数で4桁の数
$n^4=10000_{(n)}$ はn進数で5桁の数
・・・
$n^y=100 \dots 0_{(n)}$ はn進数で(y+1)桁の数

これでn進数で表した数xが何桁かを調べることを考えられます。
そのために対数関数 $y=\log_{n}{x}$ が登場します。
よく見てください。$y=\log_{10}{x}$ ではなく $y=\log_{n}{x}$ です。「10」が「n」に変わっています。

つまり関数 $y=\log_{n}{x}$ は、xにある数を入れると、yが「nの何乗か」を表す数になります。
以上から次のことが分かります。

$ y=\log_{n}{x} $

  • $x$ は $(y+1)$ 桁の数
  • $x$ は $n$ の $y$ 乗
  • $x=n^y \Longrightarrow x=n^{\log_{n}{x}}$

こうして、扱う数が何進数であろうと、確かに対数関数は指数や桁数を調べる関数なのだと言えます。

常用対数と一般の対数

ここまでの話を少しまとめます。

対数関数 $ y=\log_n{x} $ は、実用面では n=10 すなわち $ y=\log_{10}{x} $ で用いて「10の何乗か」を求めることが多いです。そのため  $ y=\log_{10}{x} $ のことを特に「常用対数」と呼びます。
数Ⅱではnの表示を省略して単に $y=\log{x}$ と書けば、それは $ y=\log_{10}{x} $ の意味になります。

そして n を色々な数に変えて使うことができます。この様子を式に書いたのが以下です。

  • $ y=\log_{10}{x}   \Longrightarrow$ 10進数の世界でxは(y+1)桁の数
  • $ y=\log_2{x}   \Longrightarrow$ 2進数の世界でxは(y+1)桁の数
  • $ y=\log_3{x}   \Longrightarrow$ 3進数の世界でxは(y+1)桁の数
  • $ y=\log_n{x}   \Longrightarrow$ n進数の世界でxは(y+1)桁の数

負の数はダメ!

対数関数について使用上の注意です。

注意事項

対数関数の「n」や真数「x」必ず0より大きい正の実数でなければなりません。

さて、どうしてnが正なのか。
逆にnが負の数だと何が不都合なのか。
まず、それについて補足しておきます。

負の数と指数の関係を見てみましょう。

  • $(-2)^1=-2, (-2)^2=4, (-2)^3=-8, (-2)^4=16, (-2)^5=-32$
  • $(-n)^1=-n, (-n)^2=n^2, (-n)^3=-n^3, (-n)^4=n^4, (-n)^5=-n^5$

このように負の数のべき乗は、指数が奇数の時は負で、指数が偶数なら正の数になります。
指数が1つ増えるたびに符号が反転してめんどうです。
しかし、面倒なのはこれだけではありません。

  • $(-2)^{1.33}=?$
  • $(-n)^{1.33}=?$

この様に、指数を小数にした瞬間、意味が分からなくなってしまいます。
正の数と負の数の中間の世界???
・・・そんなのありません。

そんなわけで、対数関数の世界では、必ず「底nは正」です。
したがって $ x=n^y $ ですから「真数xも正」です。

※大学で「複素関数論」を学べば真数が負でも計算できるようになります。その場合yは複素数になります。

指数の法則がそのまま公式になっている

対数は指数を表していますから、指数の法則の指数部分の振る舞いが、そのまま公式になります。

指数の法則

  • $ a^x \times a^y = a^{x+y} $
  • $ a^x \div a^y = a^{x-y} $
  • $ (a^x)^y  = a^{x \times y} $
  • $a^0=1$

対数の性質

  • $ \log_a{(a^x \times a^y)} = \log_a{a^{x+y}} = x+y = \log_a{a^x} + \log_a{a^y} $
    よって、 $ log_a{(X \times Y)} = \log_a{X} + \log_a{Y} $
  • $ \log_a{(a^x \div a^y)} = \log_a{a^{x-y}} = x-y = \log_a{a^x} – \log_a{a^y} $
    よって、 $ log_a{(X \div Y)} = \log_a{X} – \log_a{Y} $
  • $ \log_a{ (a^x)^y } = \log_a{a^{x \times y}} = x \times y = \log_a{a^x} \times y =y \log_a{a^x} $
    よって、 $ log_a{X^y} = y\log_a{X} $
  • 上の式で特に $X-a, y=1$ のとき $ log_a{a} = 1 $
  • $\log_{a}{1}=\log_{a}{a^0}=0\times\log_{a}{a}=0\times 1 =0$
    よって、 $\log_{a}{1}=0$

対数の計算公式

  • $ log_a{(X \times Y)} = \log_a{X} + \log_a{Y} $
  • $ log_a{(X \div Y)} = \log_a{X} – \log_a{Y} $
  • $ log_a{X^y} = y\log_a{X} $
  • $ log_a{a} = 1 $
  • $\log_a{1} = 0$

この公式は難しそうですが、次のように言葉で理解してしまった方が覚えやすいです。

対数の計算公式の覚え方

  • かけ算はたし算に
  • わり算はひき算に
  • べき乗はかけ算に
  • 底と真数がそろったら1
  • 真数が1なら常に0

対数のこうした公式(性質)の利用法やメリットを知れば、もうすこし馴染みが出てきます。続いて、それを見てみましょう。

底の変換公式

数Ⅱの対数関数で重要な公式がもう1つあります。
ただし、これは丸暗記した方が速いので、成立する理由の説明は省略し、ただ載せるだけにします。

  • 底 nを底mに変換するための公式
    $$\log_{n}{x}=\frac{\log_{m}{x}}{\log_{m}{n}}$$

底の変換公式の覚え方

  • 古い底が分母、古い真数が分子

かけ算を足し算に、割り算をひき算に変換する!?

対数関数の便利な効能と、その使い方をご紹介します。

対数関数の効能(公式の意味)

  • かけ算を足し算に変換する
  • わり算をひき算に変換する
  • べき乗はかけ算に変換する

この性質を応用すると、指数でグチャっとなっている式を、足し算と引き算で解きほぐすことができます。

例えば、こんな問題です。

3つの正の実数 $x, y, a>0$ において、次の連立方程式 $ a^x=2a^y $ かつ $ x-2y=0 $ を満たすような a を求めよ。

与式 $ a^x=2a^y $ が指数のお化け団子です。これだけでは解きようがありません。そこで対数( log )を使います。

$ a^x=2a^y $ の両辺について、 $a$ を底とする対数をとると、

$ \log_a{a^x}=\log_a{(2a^y)} $
$ x=y\log_a{(2a)} $
$ x=y(\log_a{2}+\log_a{a}) $
$ x=y(\log_a{2}+1) $

ここで $ x-2y=0 $ すなわち $ x=2y $ を代入して

$ 2y=y(\log_a{2}+1) $

$y>0$ だから両辺を $y$ で割って

$ 2=\log_a{2}+1 $
$ 1=\log_a{2} $
$ a=2 $

このように対数を使えば求める事ができます。

まとめ

  • 対数関数 $ y=\log_{n}{x}, (n>0, かつ x>0)$
  • nに負の数が定義されることはありません!
  • xに負の数を入れてはいけません!
  • $ log_a{(X \times Y)} = \log_a{X} + \log_a{Y} $
  • $ log_a{(X \div Y)} = \log_a{X} – \log_a{Y} $
  • $ log_a{X^y} = y\log_a{X} $
  • $ log_a{a} = 1 $
  • $\log_a{1} = 0$
  • $\log_{n}{x}=\frac{\log_{m}{x}}{\log_{m}{n}}$
  • 対数を使えば指数でグチャっとなった式を解きほぐせる

1カ月も悩んだ生徒に15分講義したらスッキリ

学校の授業が全く分からない!

これは偏差値の低い高校だから起こる、というものではありません。少なくとも生徒たちの生の声を聞く限り、むしろハイレベル(偏差値60~65くらい)の高校の方が、そういう生徒の割合が高いです。
そして、この傾向は公立高校の方が私立高校よりも顕著です。

うちの生徒たちで言えば、天白高校、昭和高校、菊里高校ですね。

高校の先生にしてみれば、生徒の優秀さに期待して

「高度な授業を見せてやりたい。」

という熱意があると思います。

一方、それはなかなか厳しいのが現実のようです。
多くの生徒たちが、ついて行けなくなっている印象です。

たとえ優秀な高校の生徒であろうと、基礎を飛ばして応用はできないということですね。
予備校のハイレベルコースならともかく、現役の高校生は単元の基礎から初めてなのですから。

このことから、基礎と応用の間は、思ったほど距離が離れているワケではないのかもしれません。
むしろ基礎の奥深い理解こそが、応用とも言えますね。

もちろん偏差値の高い進学校では、教科書の予習はしてくるのが前提でしょう。
確かに、現在はネットで多くのことを自分で調べられるようになりましたから、予習はし易いと想像できます。
「高校は義務教育ではない」と言ってしまえばそれまでですが。

それでは100歩譲って、自分で予習しても学校の授業について行けなかったとしたら、その理由は何でしょうか?

それが上で述べたような「目的が分からない」ということだと思います。
要は納得感の問題です。
食わず嫌いで頭に入らなくなっています。

そこで、

  • 「この章では何がしたいのか?」
  • 「この数式は何がしたいのか?」

という話をします。
解法や暗記ポイントとは全く違う視点なのですが、優秀な生徒ほど、案外こうした動機付けが功を奏します。
きっと、そういう目的を最初に生徒たちへ明示する必要があるのでしょう。
実際、

「先生、学校の数学の授業なんですが、ここ1か月の間、ぜんぜん何やってるか分かりません!」

と助けを求めて来る生徒に、私が15分講義しただけでスッキリして帰る、という場合も珍しくありません。

そのような場合、私は大したことはしていません。
数学のその単元で

「何をしたいのか?」
「何を受け入れるべきか?」

というポイントを先に教えるだけです。
細かい計算や確認は、むしろ本人に任せてしまいます。もちろんチェックはしますけどね。
任せた上で、詰まった所だけフォローする方が効率的な場合もあるからです。

単元の「目的」が生徒の学習脳を動かす?

上記のような経験から言えることは何でしょうか。

「単元の目的を共有する」

これが学習の効率を高めるのだと私は思います。
このことは偏差値とは関係ないことも分ってきました。
どのようなレベルの高校の生徒だとしても、単元の目的を明確にしてあげると、勉強が加速します。

いざ問題を解き始めれば、生徒たちの頭の中には

「自分で理解して、自分で解き切りたい」

という欲求が強く働いています。
そのため、解法の全てを解説してしまうと、むしろしつこいというか、嫌がられます。

「あー、そこまでは自分で解けたかもしれないのに、なんで先に言っちゃうの!」

というふうに思われれしまいます。
推理小説で、先に犯人の名前を言われてしまうような、ネタばらしをされたような、そんな感覚です。

解く過程の全てまで教えてしまうのは、親切な事ではありません。
むしろ本人が自分の頭を使う機会を奪ってしまいます。成長のチャンスを奪ってしまうのです。
脳は動かさなければさび付いていきます。動かす機会を奪ってはいけません。

ですから、うちは余計な解説はしない、という指導水準になっています。
いかに良いヒントを出すか。それが講師の腕の見せ所です。

逆に、このことに納得できないと、成績は伸びません。

「手とり足とり教えます」

これが親切だと思われるのは錯覚です。塾長はそう思います。
そういう塾には自分の子供を入れたくないですね。
頭が悪くなりそうです。

〈余談〉高校の関数が難しいのには理由がある!?

実は、高等数学の関数が「難しい」と感じるのには、ちゃんとした理由があります。
それは関数の振る舞いが、人間のもつ「経験則」と合わないからです。
グラフの意味をなかなか想像できないからです。

人間は過去に繰り返された経験から

「きっと次も同じようになるだろう」

と予想して未来に備えるように進化してきました。
そして次のように、他の動物よりも「経験則」を細かく把握できます。

  • 川の水位が毎日3cmずつ増えているから、きっと明日も今日より3cm増えるだろう。(比例という経験則)
  • 村の人口が2倍、3倍に増えていけば、自分の収穫高は1/2、1/3に減っていく。(反比例という経験則)

つまり次のように理解するのが人間の持つ感覚です。

  • 「伴なって増える」→「比例」
  • 「相反して減る」→「反比例」

このように小学校や中学校からお馴染みの「比例」や「反比例」は、人間が本能的に持つ経験則を数字で表したものです。
もちろんグラフの読み書きは練習する必要がありますが、グラフの意味は人生経験に置き換えて理解することができます。
ですから、比例や反比例までなら義務教育で全員に学ばせても、そう無理はないだろう、ということです。

関数が難しい理由の本質とは?

そうすると、高等教育の数学において、

「関数がわかり易い」

と皆さんがおっしゃるのは、

「比例や反比例の感覚で納得ができる」

ということになるわけです。
逆に比例や反比例で解釈できないものは

「わかり難い関数」

ということになります。
これが関数が容易か難しいかの本質です。

そして三角関数や対数関数は、比例や反比例ではありません。

ですから11月~12月にかけて、多くの高校2年生が対数関数で頭を抱えます。

こうした生徒の理解構造まで把握したうえで、高等数学は教える必要があります。
ひたすら式の意味だけを説明したところで、ほとんどの生徒は納得できないわけです。

単元の目的を共有し、そして教え過ぎない。
特に新しい概念を導入する時は、生徒がそれまでに学んできた知識体系、つまり理解構造を意識して教える。

そのようなことが大切だと思います。

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL