個別指導塾、学習塾のヒーローズ。植田(名古屋市天白区)、赤池(日進市)の口コミで評判!成績が上がる勉強方法が身につく!振替、自習も便利!
// 条件1に該当しない場合の処理

算数

夏休みの自由研究 かけ算とわり算の原理をプログラミング

塾長です。

いよいよ夏休みも後半です。

学生のキミたち、そろそろ読書感想文や自由研究に着手しましょう。

ということで、自由研究ネタを1つご提供します。

算数の研究です。

しかし、内容が深くてプログラミングもありますから、きっと中学生でも使えるでしょう。

算数や数学で「文章問題が苦手」という人には、特にチャレンジして欲しいです。

そもそも「かけ算」や「わり算」の意味とは?

もしも小学1年生や2年生から、次のように質問されたら、どのように答えますか?

  • 「かけ算」とは何ですか?
  • 「わり算」とは何ですか?

塾長は、次のように答えます。

  • 「かけ算」とは「たし算の繰り返し」です
  • 「わり算」とは「ひき算の繰り返し」です

なぜなら、

人類で初めて「かけ算」や「わり算」を発明した人は、きっと上のように考えたに違いない!

塾長は、そうに思うからです。

これをプログラミングで確かめていきたいと思います。

「たし算」で「かけ算」をプログラミングする

もしも「かけ算」が「たし算の繰り返し」なら、その通りに計算ができるはずです。
やってみましょう。

具体的な例から「かけ算」のパターンを考える

5×3の場合

例えば、5×3の計算を考えましょう。

5×3=5+5+5=「5を3個たす」=15(積)
ここで「たし算」の「+」記号は2個です。

つまり、

5を「3個」たすときは、たし算を「2回」使います。
たし算の回数は3-1=2回です。

7×6の場合

もう1つの例、7×6の計算ではどうでしょう。

7×6=7+7+7+7+7+7=「7を6個たす」=42(積)
ここで「たし算」の「+」記号は5個です。

つまり、

7を「6個」たすときは、たし算を「5回」使います。
たし算の回数は6-1=5回です。

「かける数」は「たした個数」

まとめます。

m×nの場合

一般化して、m×nの積を計算する方法を考えます。

上の2つの例から、これは「mをn個たす」です。
そして、たし算を使う回数は(n-1)回です。

つまり、

m×nとは、mに(nー1)回だけmをたし算すること

まとまりました。

スクラッチでプログラミング

それでは上のm×nの手順をプログラムにしてみましょう。

mにmをnー1回たす

これをプログラミングしたのが次です。

たし算でかけ算をプログラミングした図

  1. 「積」という変数を用意して、それにmを代入
  2. 「積にmをたす」という処理を(nー1)回くりかえす
  3. 「積」を表示

試しに、4×9でプログラムを実行しました。結果は36で正しいです。

つまり「たし算」を繰り返せば、確かに「かけ算」を計算できることが分かりました。

そしてこのプログラムは、どんな自然数どうしのかけ算でも計算できます。

プログラムのカイゼン

ところで、このプログラムは1つ分かりにくい所があります。

「×n」なのに、繰り返す回数が「n-1回」です。
「かける数」と「回数」が1つズレています。

これを同じにできれば、もっとプログラムが分かり易くなります。

そこで、こう考えたらどうでしょうか。

変更前: 最初に「積」という変数を用意して、それにmを代入します。
変更後: 最初に「積」という変数を用意して、それに0を代入します。

こうすれば、繰り返し回数もnになります。
つまりプログラムがこうなります。

プログラムがシンプルで見やすくなりました。

「かける数」は「0にたした回数」だった!?

プログラムを見やすくするために、上のように改善しました。

逆に、このプログラムが行っている処理を式で表すと、どうなるでしょうか。

例えば、7×6の場合に戻れば、こうなります。

変更前: 7×6=  7+7+7+7+7+7+7
変更後: 7×6=0+7+7+7+7+7+7+7

単に「かける数」と「たす回数」が同じになるように工夫しただけですが、実は、こうした方が数学的にも良いことが分かっています。

それは「かける数」を3、2、1、0と小さくしていけば分かります。
変更前の考え方では、

7×3=「7に7を2回たす」
7×2=「7に7を1回たす」
7×1=「7に7を0回たす」
7×0=「7に7を?回たす」

となってしまい、7×0を考えることができません。
一方、変更後の考え方ならば、

7×3=「0に7を3回たす」
7×2=「0に7を2回たす」
7×1=「0に7を1回たす」
7×0=「0に7を0回たす」

となりますから、ちゃんと7×0=0も計算できます。

ちなみに0という数も人類が「発明」した数なのだそうです。

「ひき算」で「わり算」をプログラミングする

たし算と同じように、わり算についても考えてみましょう。

もしも「わり算」が「ひき算の繰り返し」なら、その通りに計算ができるはずです。

やってみましょう。

具体的な例から計算のパターンを考える

9÷3の場合

例えば、9÷3の計算を考えましょう。

9÷3=「9の中に3がいくつあるか?」=「9-3-3-3=0だから9から3を3回ひけた」=3(商)
ここで「ひき算」の「-」記号は3個です。

つまり、

9から3を「3回」ひき算できたから、商は3です。

12÷5の場合

もう1つの例、12÷5の計算ではどうでしょう。

14÷5=「14の中に5はいくつ?」=14-5-5=2だから2回ひけて4あまった」=2(商)あまり4
ここで「ひき算」の「-」記号は2個です。
まだ4余っていますが、3回目の引き算まではできません。

つまり、

14から5を「2回」ひき算できて4余るから、商は2あまりは4です。

「商」とは「引くことができた回数」

まとめます。

m÷nの場合

一般化して、m÷nの商とあまりを計算する方法を考えます。

上の2つの例から、商は「mからnを引ける回数」です。
しかし、ひき算できる回数は、計算してみなければ分かりません。
1回引いてみて、まだ引けそうならもう1回引いてみて・・・という計算を繰り返します。

m-n=〇 もしも 〇>n ならば もう1回引ける・・・

という判断を繰り返してい良く計算です。
ですから、

わり算で商と余りを求めるとは、

m-n-n・・・-n=△ かつ 0≦△<n
k回引けたので商がk、余りが△

という処理をすること

まとまりました。

スクラッチでプログラミング

それでは上のm÷nの手順をプログラムにしてみましょう。
それが次です。

ひき算でわり算をプログラミングした例

  1. 商(引けた回数)を0回に設定、余り(引き算の残り)をmに設定
  2. 余り に 余り―n を代入し、商に1をたす(引いた回数を数える)
    これを 余り<n になるまで繰り返す
  3. 商と余りを表示

「あまり」は文字通り「余りもの」だった!?

上の処理からわかるように、余りは文字通りの余りでね。

mからnを何度もひき算して、もうこれ以上はひき算できない。
けれども中途半端に数が残っている。

それが余りです。

「わり算」を「お茶くみ」の手順で考えれば、商が小数でも解ける!?

ところで、これまで「わり算」の意味を

m÷n=「mの中にnがいくつあるか?」

としていました。
しかし、m÷mの意味は、もう1つあります。

m÷n=「mをn当分したら、1つあたりいくつになるか?」

これは、お茶くみの手順で考えれば、解くことができます。

mミリリットルのお茶をn個のコップに入れていくと、1人あたり何ミリリットル?

mミリリットルを全て急須にいれて、n個のコップを並べます。
急須から少しずつn個のコップへお茶を注いでいき、均等になるようにしますよね。

そして、急須の中の量が少なくなるにつれて、分配するお茶の量も少なくしていきますよね。
最後の1周は1滴ずつとか(そこまでやらないか)。

この手順をプログラムにすればよいのです。

  • まず、1ミリリットルずつ順番にn個のコップに入れていきます。
  • そして、余りが1×nミリリットル未満になったら、今度は0.1ミリリットルずつ入れていきます。
  • そして、余りが0.1×nミリリットル未満になったら、今度は0.01ミリリットルずつ入れていきます。
  • そして、余りが0.01×nミリリットル未満になったら、今度は0.001ミリリットルずつ入れていきます。

・・・これを繰り返していき、最後に1つのコップに入っているお茶の量が商になります。

このようにすると、商が小数になるようなわり算でも「ひき算」の繰り返しで計算できることが分かるでしょう。

プログラミングは、みなさんの宿題にしたいと思います。

たし算の記号「+」と、かけ算の記号「×」が似ている理由

上で見たように、かけ算はたし算で計算できます。

そう考えると、かけ算の記号「×」と、たし算の「+」が似ているのも納得ですよね。

「+」を少しだけ変えて「×」が作られています。
というか、角度を45度かたむけただけですね。

似ているどころか、形は何も変わっていません。

よく考えられていますね。

ひき算の記号「-」と、わり算の記号「÷」が似ている理由

わり算は、ひき算の繰り返しでしたから、

わり算の記号「÷」と、ひき算の「-」が似ているのも納得です。

ただ、形も変わっています。
真ん中の横線は共通ですが、それに上下の「・」マークが追加されています。

これは「わり算」=「分数」だからでしょう。

m÷n=$ \frac{n}{m} $

と書けることは、小学5年生の算数の単元「等しい分数」で習います。
分数の形をデフォルメすれば、正に「÷」というピクトグラムになりますね。

よく考えられています。

わり算のもう1つの記号「/」

ところで、エクセルやプログラミングの計算式では、わり算の記号を「/」で表しています。

たし算の記号「+」を傾けて、かけ算の記号を「×」としたように、
ひき算の記号「-」を傾けて、わり算の記号を「/」とした方が、統一感があります。

グーグル検索で調べてみると、海外の学校や教科書では、むしろ「/」を採用している方が普通のようです。

さらにコロン「:」を使っている国もあるそうですよ。
なるほど、その手もありますね。

これからコンピューターの利用が進んでくると、わざわざキーボードにない「÷」を使うのはめんどうですね。
もしかしたら日本も将来は「/」になるのかもしれません。

ちなみにプログラミング言語 Pythonでは、

  • m/n ・・・ m÷nの商(小数)
  • m//n ・・・ m÷nの商(整数)
  • m%n ・・・ m÷nの余り(整数)

という使い分けをしています。

コンピューターは「たし算」と「ひき算」しかできない!?

今から10年以上前に、塾長は趣味で望遠鏡を動かすプログラミングをしていました。

乾電池で動くような、とても小さなコンピューターを動かすプログラムでした。
このような小さなコンピューターは「マイコン」と呼ばれています。

マイコンにも色々ありますが、指先に載るような小さなものになると、使える命令がとても少ないです。

そのとき使っのは、PIC16Fなんちゃら、というマイコンでした。
それには四則計算の命令が「たし算」と「ひき算」の2つしかありませんでした。

「かけ算」と「わり算」が無いのです。

電卓を買ったら「×」と「÷」のボタンがなかった・・・というくらい衝撃でした。

「かけ算」や「わり算」が1回で計算できるコンピューターは高級品なのだと、そのとき知りました。
逆に、そのような高性能なコンピューターでも、中身は「たし算」と「ひき算」の組み合わせだけで作られているのだと実感しました。

考えてもみれば、これは当然です。

コンピューターはデジタルですから、0と1の数字をたくさん並べて計算しています。

0に1をたしたら1で、1から1を引いたら0です。
そのような処理を、膨大な数だけこなして、結果的にたくさん複雑な処理をしています。

だから究極的には、たし算とひき算しかしていません。

そう考えると今回は、

コンピューターの原理だけを使って「かけ算」や「わり算」をプログラミングした

とも言えます。
ちょっと大袈裟ですかね。

何はともあれ、計算には意味があります。
上のように「かけ算」や「わり算」の意味を深く理解してしまえば、文章題も怖くはありません。

あとがき

教科書が分かりやすくなり、一部はデジタル化しました。
無料で多くの分かりやすい解説動画が視聴できるようになりました。

分かりやすい教材があふれている今日ですが、だからといって、昔に比べて優秀な生徒が増えたという印象はありません。
つまり今も昔も、相変わらず

計算はできるけど文章題ができない

というのが、多くの生徒たちの悩みです。

計算の「やり方」はドリルで訓練しやすいです。
早く計算する「テクニック」も指導の良いネタです。

その一方で、

計算の「意味」や本質を考えさせるようなコンテンツは、なかなかウケません。
むしろ眠くなります。

しかし、それらにこだわって勉強しなければ、なかなか文章問題が得意にはならないでしょう。
そこが腕の見せどころ、と言ったところでしょうか。
きっとベテランの先生は、そういうのが得意なのだと思います。

ですから、より本質をつくようで、なおかつ面白くて飽きさせないようなコンテンツが、
きっとこれから先、どんどん登場してくることでしょう。

もしもプログラミングを活用した上のような事例が、その好例になるのなら幸いです。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

プログラミングに数学は使いますか?どれくらい必要ですか?

プログラミングに数学は使いますか?(サムネイル)

塾長です。

今週はテスト対策の準備と指導で忙しかった。
来週からが本番なのですが・・・。

そんな中で、高校3年生が中央大学経済学部に推薦合格しました。
おめでとう!
おかげで疲れが吹っ飛びました!!

けっこう数学を使う分野に進むので、これから数学も勉強していくそうです。
最近は私大文系でも入試に数学を課すところが増えてきました。

さて、そんな数学ですが、プログラミングでは使うのでしょうか?

  • 小学校で習う算数は使う?
  • 中学1年生、2年生、3年生の数学は?
  • 高校のsin, cos, tan は?
  • 使うとしたら、いつ、どんな分野で使うのでしょうか?
  • 数学ができなければプログラマーに成れないのでしょうか?

ということで、解説動画(YouTube)を作りました。

ちなみに、数学を使わないプログラマーの方が多いです。
そうなる理由も解説しています。

ぜひ、ご覧ください。

プログラミングに数学は使いますか?学校で習ったことは役立ちますか?

動画の内容

0:00:20 数学的な思考力は必要というけれど・・・
0:00:38 どの程度の数学までが使われる?
0:00:52 小学校の算数は使いますか?
0:01:20 中1~中2の数学は使いますか?
0:02:09 中3の数学は使いますか?
0:02:25 高校の数学は使いますか?
0:02:46 逆に高等数学はいつ使う?
0:02:53 プログラミングで何をつくる? 2つのタイプ「AとB」
0:03:03 Aタイプのプログラミング → 数学を使わない
0:04:08 Bタイプのプログラミング → 数学を使う
0:05:20 【実例】マイクラミングでAタイプとBタイプを比較
0:05:50 マイクラミングでのAタイプ
0:07:55 マイクラミングでのBタイプ
0:10:24 2つのタイプの比較まとめ
0:11:12 AかBか、どっちが良い(高収入)?
0:13:11 最後のまとめ

マイクラミングとは

動画の中に出てくる「マイクラミング」とは、プログラミング教室のブランド名です。

ジュニアコースからプロコースまであり、小学2年生から大学1年生まで通っています。
動画に出てくる画面は、ジュニアコースからハイコースで使う環境です。

マインクラフトというゲームの世界をスクラッチでプログラミングすることができます。
本来なら高等数学や大学の数学が必要な図形処理を、小学生でも簡単に扱えるように工夫されています。

ご興味がある方は、教室までお問い合わせくださいませ。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

1=2が証明されたってホント!? ウソを見破れるかな?

数式を見つめる少女の写真

塾長です。

たまに虚構新聞の記事を見て爆笑しています。
ある虚構新聞のファンから次のアドバイスをいただきました。

科学面の「『2と1は等しい』数学界で論議」という記事が面白いよ。これ教育に使えるんじゃない?

2008年の記事です。
こんな素晴らしい記事を見過ごしていたとは。

1=2の証明!! ホント?ウソ?

まず問題となっている「1=2」の証明を見てみましょう。

問題となった証明

上の記事からの抜粋と補足です。中3以上の知識で読めるでしょう。

因数分解を使いますが、数学の好きな生徒ならば、中学2年生でも何とか読むことはできるでしょう。

$$ a=b $$
両辺に $a$ をかけて
$$ a^2=ab $$
両辺から $b^2$ を引いて
$$ a^2-b^2=ab-b^2 $$
両辺を因数分解して
$$ (a+b)(a-b)=b(a-b) $$
両辺を $(a-b)$ で割って
$$ a+b=b $$
ここで $a=b$ であったから
$$ 2b=b $$
両辺を $b$ で割って
$$ 2=1 $$

むむむぅ・・・確かに結論が「2=1」となってしまいました。

どうでしょう?

大真面目な質問

この証明は正しいと思いますか?

数学では、たった1つでも反例を言えれば間違いと言えます。
逆に言えば、何も間違えを指摘できなければ「正しい」ことになってしまいます。

もしも上の証明の間違いを言えなければ、みなさん、大変ですよ。

1=2が正しいとなれば、また小学校から勉強のやり直しです。

それは嫌です。

何とかして証明の間違いを見つけたいところです。

いかがでしょう?

証明のどこが間違いなのか、みなさんは分かりますか?

どうしてこうなった?

計算のルール。たくさんあります。

その1つでも無視して計算してしまうと、このような詭弁が生まれてしまいます。

もちろん冗談としては、なかなか面白い証明です。

やってはいけないルール

それはさておき、

上の証明で無視したルールが1つあります。

それは何でしょうか?

このルールを無視してしまうと「何でもあり」の結論を好きなだけ導くことができます。

そのルールとは、

0で割ってはいけない

です。
このルールに違反してしまった計算のことを、

ゼロ除算

と呼びます。まるで犯罪名のような名前までついています。

教科書で明記されているか?

ゼロ除算

これについて、いつ学校で教わるのでしょうか?

割り算は小学3年生で習います。
しかし小学校では「指導しなくてよい」というスタンスです。
ただし一部の教科書では、国語的な意味で「答えは0」と解釈できる場合を紹介しています。

中学の教科書でも「0で割ることは考えない」としています。
これも、あまり明確に「0で割らないように注意しろよ!」と教えることはないようです。

このルールを明確に意識するのは、高校数学からです。
ゼロ除算を特別に取り上げるページは無いものの、式の証明や場合分けの過程で何度となく教わります。

どこでゼロ除算をしてしまったのか?

さて、話しを戻しましょう。

冒頭の証明のどこでゼロ除算を犯してしまったのでしょうか。

これは証明の式に、具体的な数字を当てはめれば分かりやすいでしょう。
特に次の式以降に着目です。

証明の中で、次の行に注目です。
$$ (a+b)(a-b)=b(a-b) $$
ここで $(a-b)=0$ ですから、この式は、
$$ (a+b)\times 0=b\times 0 $$
ということです。
ここで両辺を $(a-b)$ で割る、つまり $0$ で割ってしまいました。

このように、0で割ってしまうルール違反をしていました。

なぜ0で割ってはいけないの?

それでは、そもそも0で割ってはいけない理由、なぜでしょうか?

破壊的だから

数学者の厳密な説明はさておき、まずは良くないことが起こる様子を経験しましょう。
上の式で見たようなことを、具体的な数字に置き換えてみれば分かりやすいです。

$$ (a+b)\times 0=b\times 0 $$
この部分をさらに
$$ 100\times 0=5\times 0 $$
などと書いてみましょう。
これは右辺も左辺も確かに $0$ となって正しいです。
しかし両辺を $0$ で割ったらどうでしょう。
$$ 100=5 $$
とたんに話がおかしくなります。

このように

「0で割る」

を許してしまうと、33=101 のような詭弁をいくらでも作れてしまいます。
0で割ることに

「意味が定まらない」

ので、それを逆手に取って

「どのような意味にも設定できてしまう」

とできてしまうからです。
これは、かなり破壊的です。
一般に、

$$ x\times 0=y\times 0 $$
を満たすような $x, y$ は「何でもよい(不定)」

です。
よって

「0で割る」

を許してしまうと、上で見たように

何でも=何でも

という関係をいくらでも作れてしまい、おかしくなります。
数の世界が破壊されてしまいます。

よって、0で割ることを安易に許してはいけません。

そういうルールです!

意味が分からないから

そもそも「0で割る」とは、どういうことでしょうか?

例えば

$100\div 5$

は、

「100を5等分にした内の1つ」
または
「100の中に5がいくつ入るか」

などという意味になります。
試しに後者の意味だとします。

では、

$100\div 0$

の計算は、どうなるのでしょうか。

「100の中に0はいくつ入るか?」

なぞなぞなら「2つ」というトンチも許されますが、割り算の答えにはなっていません。
かと言って、答えが分かりません。

「そもそも0の何個分?」

という意味が分かりません。
0は何個集めても0だからです。

計算が終わらないから

そこで100歩譲って、

$100\div 5$

から出発して、「割る数」の5を、どんどん小さくして0に近づけようと思います。

$100\div 5 = 20$
$100\div 0.5 = 200$
$100\div 00.5 = 2000$
・・・
$100\div 0.00000000 \dots 005 = 2000000000 \dots 00$

このように、割る数を0に近づければ近づけるほど、答えは無限に大きくなってしまいます。
これを繰り返していけば、いつか「0の何個分」か答えらえれそうです・・・

・・・しかし、割る数はどこまでも小さくできます。
出てくる答えも、どこまでも大きなります。

この作業は、いくらでも続けられます。
終わりません。
永遠に続きます。

結論が出ないから禁止

そして、いくら続けても、

「0で割る」

の結論が出ません。

宇宙が終わる頃には結論が出るのでしょうか?

それも分かりません。

さらに、良くないことがあります。
割られる数が100であろうと1であろうと、2であろうと、とにかく

「答えが無限に大きくなり続ける」

ことに変わりがありません。
だからといって、

100÷0

3÷0

無限の先で同じ答えになっているのか、あるいは違う答えになっているのか、それも分かりません。

このように「0で割る」という計算は、いくら考えても答えを特定できませんでした。
だから「0で割る」という計算の定義ができないことになります。

「0で割る」

とは

「わからない」

または

「永遠に計算が終わらない」

または

「そもそも計算の定義ができない」

ということになるわけです。

だから、

「0で割るな!」

となったわけです。

プログラミングでも禁止

プログラミングの世界、もっと言えば、コンピューターを使う世界でも、

「0で割ってはいけない!」

というルールが徹底されています。
プログラマーならだれでも

ゼロ除算

という悪魔を知っています。
これが出てきてしまうプログラムを書いてはいけません。

さて、実際にやったらどうなるのでしょうか?

試しに、Pythonというプログラミング環境で

$5 \div 0 $

を計算した結果が次の画面です。

ちなみにプログラミングでは「5÷0」のことを「5/0」と書きます。

ゼロで割れない

パイソンで0除算エラー

 

“ZeroDivisionError: division by zero” (0で割ったというエラー)

というエラーが表示されて、怒られてしまいました。

近代的なプログラミング環境では、コンピューターに「÷0」を計算させる前に、その式を検出してエラーを出すようになっています。
コンピューター全体が止まってしまったら大変ですからね。

このようにコンピューターの世界でも「0で割る」は禁止です。
ですからプログラマーの世界では「ゼロ除算」と言ったら、それはバグ(*)の1つを指します。

これが本当に計算されてしまうと、最悪の場合、コンピューターが止まってしまいます。

(*) プログラムの不具合のこと

勉強したことを笑いに活かす

今回は虚構新聞の昔の記事から数学のお話をしました。

虚構新聞はフェイクニュースのサイトです。
このようにウィットの利いた面白いニュースをでっち上げるジョークサイトです。

文字通り「虚構」の新聞ですね。
このような分野では有名で、すでに不動の地位とも言えます。

本当のことを知っている人だけが楽しめます。

勉強したことをジョークに活用する。

そんな勉強の応用もあるんですね。
虚構新聞の記者たちの仕事は楽しそうです。

何に価値があるのか、何が仕事になるのか。

やってみないと分からないものです。

キャリア教育のネタにもどうぞ。

ゼロで割ったら答えが0?

最後に少し補足です。

特定の文脈において「0で割った」ときの答えを定義することは可能です。
例えば、

300gのケーキを100gずつ分けました。何人に配れるでしょう?

という文脈があったとします。この計算は、

$300 \div 100 = 3$

ですから、答えは

3人

となります。
つまり、この文脈では「割り算の答え」は「配れる人数」を意味します。
この文脈を前提として、

300gのケーキを0gずつ分けました。何人に配れるでしょう?

を考える場合はどうでしょう。同じように計算式は、

$300 \div 0 = ?$

となりますね。
もちろん式だけ見れば計算に困りますが、文脈から答えを決めることはできます。

答えが分からない → 配れる人が決まらない → 配れない → 配れる人数は0人

このように社会的な意味から答えを導いて、それに合わせて

$300 \div 0 = 0$

と無理やり決めてしまうことができます。
こうして、この文脈の中では、

「0で割った答えは0人」

と決めることができるでしょう。

実際、小学3年生の一部の教科書では、このような考え方を紹介しているコラムがあります。
ただし、あくまでも考え方の1つにすぎません。
こうした教科書の影響かどうか分かりませんが、中には、

「0で割ったら0だよ。」

と覚えてしまっている人もいます。
もちろん、これは早とちりです。
常には成り立たないからです。

これはあくまでも、上のような文脈だけに通用する決め方です。
数式に対して常に言えるものではありません。
つまり、

「ローカルルール」
にすぎません。

このように、0で割ったときの答えを決めるのは「特定の文脈上の都合」です。

それは数学というよりは、国語や社会、あるいは工学のお話しになります。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

この夏、勉強に役立つリンク集

オンライン学習をしている女子のイラスト

塾長です。

今回は、勉強に便利な情報を共有します。ご家庭での学習にお役立てくださいませ!

算数・英語・数学

小3~高3を広く解説

とある男が授業をしてみた

有名なYouTuberさんです。
学校の授業と同じように解説してくれていて、解りやすいです。
ひとりでマルチにされているので、コンテンツの数は今後に期待です。

英語 フォニックス 小6~中1・英語が苦手な人

フォニックスが身についていれば、9割の英単語は「ひらがな」のように書けます。
フォニックスをマスターするために、次の動画がおすすめです。

【プラスワン英語法】大人のフォニックス(Phonics)

これ、永久保存版です。
重森ちぐささんのYouTubeチャンネルです。
「大人の」とありますが、フォニックスは小中学生にもお勧めできます。

フォニックスとは、文字と発音の対応関係のことです。
日本語で「あいうえお」と聞けば、そのまま平仮名で「あいうえお」と文字を書けます。
これと同じで、フォニックスを覚えれば、英単語の書き取りが楽になります。

  • 英単語が覚えられない
  • 英語が書けない

こういう人は、フォニックスができていないことが多いです。
つづり間違えにより、定期テストの記述問題で減点されまくる場合も同じです。

中3英語 New Horizon 1学期の総復習

教科書会社の東京書籍さんとZ会による無料動画です。ありがたい!

【東京書籍×Z会グループ】学びをサポート!
教科書準拠授業動画 小学校算数6年 中学校数学3年 中学校英語3年

小6算数、中3数学  1学期の総復習

上と同じページです。義務教育の最終学年が対象です。

【東京書籍×Z会グループ】学びをサポート!
教科書準拠授業動画 小学校算数6年 中学校数学3年 中学校英語3年

高校数学 記述問題

YouTuber「鈴木貫太郎」さんの動画です。

国公立大学の2次試験の過去問がやや多いです。数1~数3まで広く解説しています。
文系なら難関国立大学の2次試験向けです。
理系なら国公立大学2次試験または難関私立大学の個別試験向けです。

数学への愛がTシャツの模様に表れています。

高校数学 数3 積分

有名な動画「今週の積分」シリーズです。

YouTuber  ヨビノリさんのチャンネルです。
積分のセンスを磨くなら1日1問、これをやりましょう。

英文法・語法の定番「Next Stage」の使い方

NextStage英文法・語法問題の使い方|10時間で1周したノートも公開

大学受験生の間で有名なYouTuberで東大医学部生のPASSLABOさんの動画です。
新しい大学入学共通テストの傾向を反映している点が見ものです。
他にも興味深い動画をたくさん出されています。

受験生の勉強の仕方

1日の勉強時間を増やすための動画を紹介します。

【勉強時間】1日10時間以上勉強できる魔法TOP3

大学受験と書いてありますが、内容は高校受験生でもOKです。
センセイプレイスチャンネル 大学受験の勉強法さんのYouTubeです。

ちなみに学校の授業や補講も含めて1日10時間よりも勉強していない状態は「やる気なし」です。
自分の中の「あたりまえ」を高いレベルに引き上げるために見てみましょう。
受験ではこれがあたりまえです。このあたり前を達成して初めて人並みになれます。

プログラミング

始めてプログラミングをする小学生~中学生にお勧めなのが、スクラッチです。
難しい用語の知識は不要で、マウス操作がメイン、1画面の中で全てができます。

スクラッチ(Scratch)

この環境でプログラミングの考え方をNHKが配信しています。

NHK Eテレ「Why!?プログラミング」

タイトルからお察しのとおり、人気コメディアンの厚切りジェイソンさんによる解説です。

あとがき

他にもいろいろあります。
勉強しよう、もっと知りたい、と思ってYouTubeやインターネットを見ていると、いろいろ見つかります。
何を見るにしても、何を使うにしても自分次第ですね。

みながインターネットという良い環境を手に入れつつあります。
格差の原因が、経済からモチベーションに移り変わっていきます。

 


生徒・保護者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
【会員限定】お子様の成績と可能性を伸ばす18個のノウハウ

友だち追加


塾関係者様のお友達登録はこちら

LINE登録するとプレゼントがもらえます!
「zoomで簡単。オンライン授業移行の教科書」
または個別対談も可

友だち追加

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

数学ってそうだったの!? だから暗算が数学を苦手にする!

勉強が好調な女の子のイラスト

塾長です。

今回の定期テストの個表が返って来ています。

中2から通っている高校2年生が、ついに学年1位を達成しました。おめでとうございます!
ある中3男子が総合点で自己最高点をマークした一方、前回自己最高点だった中3女子は、前回ほどではないものの目標点+7点をマークしました。
また、詳細は伏せますが、数学が12点から67点にハイジャンプした生徒もいました。

これからスパイラル学習法で学んでいく新入生たちは、先輩たちの姿を見て、しっかり着いて来てください。

常識の中にあるウソ!?

さて、生徒を指導していると「教育の間違った常識」というものに遭遇することがあります。例えば前回のブログ「できる子は、教科書に線を引かない、ノートをまとめない」もそうでした。教科書に線を引いたりノートをキレイにまとめた方が成績が上がりそうな気がします。しかし現実は反対で、テスト期間にそういう作業をしている生徒ほど点数が伸び悩むものです。

今回は「暗算」についてぶった切ります!

「算数」の計算は得意。でも「数学」は苦手。

例えば、数学で次のような悩みがある場合。きっと、あることが原因です。いったい何だと思いますか?

  • 計算は速いけどミスが多い
  • 関数、図形、文章問題が苦手
  • 中学校の数学から苦手になった
  • 数学は意味が分からない
  • 小学校の時に公文で中学まで予習したけど全部忘れた

算数や数学がいつから苦手になるのかは人によります。小学校5年生くらいから、あるいは中学1年生になってから。人それぞれですが、苦手になりやすい人の共通点は、およそ決まっています。それは、

  • 途中の式を書かない
  • 図表を自分で書かない

という習慣です。こんな状態も同じです。

  • 途中の計算過程を書かない
  • ノートに答えしか書いてない
  • わざわざ途中の計算を消しゴムで消す
  • 間違った過程を残さない

こうした習慣があると「算数」から「数学」へ発展しません。中学生になっても算数しかやっていないので、数学が苦手になってしまうのです。逆に言えば、その習慣を改善すれば数学を克服する道が開けます。

「算数」と「数学」の違いとは!?

『いつまでも「算数」しかやっていない』と書きました。そもそも算数と数学は何が違うのでしょうか。

算数とは!?

小学校までの算数は、主に、整数、小数、分数を使った「算術」について学びます。要は、目に見える物を数で表し、計算を通じて色々な視点で物の個数や量を測れるようにする訓練です。

基本的に、数には「個」「匹」「リットル」「円」などの単位が必ず付きます。具体的な「経験」を通じて「数」の基本概念を抽象化していく「過程」にいるからです。したがって教科書の構成は、

  • 基礎(大部分): 物の数や量、単位などの具体的な内容
  • 発展(部分的): 数の性質やグラフなどの抽象的な内容

となっています。

例えば小学1年生の初期では、まだ「ペン1本」の1本と「パイナップル1個」の1個は、別のものだと認識しています。それを「合わせていくつ買いましたか?」という計算を経験させると、単位を外して抽象的に考えるようになります。つまり「ペン1本だろうがパイナップル1個だろうが、数が1であることに変わりはない!」と考えて「合わせて2つ」と答えられるわけです。

このように、

具体的な経験 → 整数、小数、分数への抽象化

を繰り返しながら学びます。とても大変な経験時間を要するので、小学校の算数では、これ以上の数の拡張をしません。ちなみに余談ですが、この抽象化に失敗すると、例えば「ウン、と合わせて、ペン・パイナップルが1つ」と答えてしまうわけです。

したがって、算数の世界では「数」と言えば、整数、小数、分数でしかなく、その範囲に限って加減乗除を学ぶだけです。そのため数の「性質」や「法則」の種類が少なく、計算が単純なだけに、暗算がし易いです。

数学とは!?

中学生以降の数学は、数の概念に「負の数」「文字式」「多項式」「無理数」が仲間入りします。単位のないものばかりです。そして数と数を足したり掛けたりしたように、例えば、式と式を足したり掛けたりします。

  • 負の数の導入と、その加減乗除、指数の導入
  • 文字式の加減乗除(単項式の計算)、方程式
  • 定数、変数、関数、座標
  • 多項式の加減乗除(中学は因数分解まで、除算一般は高校)、連立方程式
  • 無理数の導入と指数の拡張
  • 座標とベクトル、虚数と複素数、合成関数や微分方程式、集合など

このように、数と同じように計算できるものが学年と共に増えていきます。整数、小数、分数に限られていた算数の世界とは違い、数の概念がどんどん広がります。正に「数」の広がりを「学ぶ」ので「数学」と呼ぶわけです。それゆえ、何のどこが「数としての性質」なのかという「法則」や「定理」が重要になってきます。

したがって教科書の構成は、

  • 基礎(大部分): 数の性質や定理の説明や証明
  • 発展(部分的): 実社会にあてはめた利用問題

となっています。例えば中1なら最初に「方程式」という単元で、定理を使って「移項する」「分母を払う」などの抽象的な計算練習をします。その後「方程式に利用」という単元で、買い物や速さを扱う具体的な問題を解きます。

定理を使った抽象的な訓練 → 具体的な問題にあてはめる

これは算数とは真逆の構成です。

したがって、式の変形(計算)には必ず定理(理由)が当てはまります。そして1行の式変形に複数の定理が複雑に当てはまることさえあります。逆に定理に当てはまらないた式変形は、たまたま数字があっていたとしても間違いです。これを放っておくと計算ミスが多発するようになります。

つまり、算数の計算に比べたら「なぜそうできるのか」の理由付けが複雑なんです。それゆえ計算が速いことよりも、論理的に正しいかどうかを確認する方が、よっぽど重要になってきます。むしろ暗算はミスを生むリスクでしかありません。

中1の数学で最初にやるべき「脱!暗算」

このように算数と数学は、まったく視点の異なる学問です。中学から学ぶ数学は「数の性質」に注目し、その性質をあてはめる対象を「負の数」や「式」にまで拡張していくわけです。

1つ1つの計算(式変形)には、それぞれ理由があります。その理由は教科書に「定理」や「法則」としてすべて書いてあります。数はそれほど多くありませんが、組み合わせて使ったり、直ぐに思いつけるようにする訓練が必要です。

そして、もしも計算が間違っていたら、その理由を必ず言えるようになっています。ですから数学では丁寧に「なぜ、どうして」と確認していくことが大切です。

そうやって注意深く計算していれば、自然と「途中の式を書いて確かる」という手順の繰り返しになるはずです。

逆に「なぜ、どうして」を確認せず、とにかく速く答えを出すことにこだわり過ぎると、計算の「理由」を無視することが多くなり、分からないことがどんどん増えてしまいます。そうすると、暗算でできるような単純な計算だけを好むようになり、新しい定理を取り入れた数の拡張ができません。

これが数学が苦手になる理由です。つまり、

暗算にこだわる → 理由を無視する/暗算ができる簡単な問題だけ好む → 数の拡張ができない → 数学が苦手になる

というメカニズムです。

速くたくさん計算できれば良いとは限らない

数学の計算には全て理由がありますが、実際には、いちいち理由を確かめるのもしんどいです。そこで色々な計算パターンを網羅した問題集を何周かした方が、手っ取り早く計算力が身に着きます。これはアウトプット型の勉強なので、私も大部分は賛成です。ただし注意点があります。それは必ず次のことを守る、ということです。

  • 少なくとも間違えたところだけは理由(教科書)を確認すべし!
  • 確認できるように途中の計算式や図表はできるだけ書くべし!

この注意点を守らないと、ある日、全て忘れてしまいます。理由のないものは頭に残らないんです。

とにかく問題集を何百ページ、プリントを何十枚もこなし、数多くの暗算パターンを覚えてスピーディに計算をしていく生徒。一見、数学が得意のように見えますが、そうとも限りません。中には少しでも応用問題になると、ポキッと折れたようにできなくなってしまう生徒が出てきます。

もちろん本当に計算もできないほど苦手な生徒からしたら、こうした生徒は「数学できるじゃん」と思うかもしれません。しかし数学は「数」の概念を広げていく学問です。基本定理を自覚せず、パターン認識だけで計算ができるようになったとしても、それはいつか破綻してしまいます。

進学校でも高校から数学が苦手になる理由とは?

高校で「数学が苦手」というレベルはまちまちですが、それでも赤点や赤点ギリギリならば、かなり苦手と言えるでしょう。

「数学を何とかしたい!」

そう言って高校コースから入塾して来る生徒たちの多くは、実は数学が苦手なわけではありません。ちゃんと教えると、意外とすんなり理解してくれます。点数からは想像できないくらい早く解けるようになってしまいます。ほんと、そんな子が多いんです。ただ、

自分でどう勉強したらよいか分からない!

そう悩んで入塾して来るのです。

そういう生徒たちは、とにかく大量の問題集や大量のプリントで中学の数学を乗り切ってきたタイプの生徒たちばかりです。公式の暗記やパターンの認識はとても速いです。しかし教科書の読み方を知りません。

高校の数学では定理の数が増えます。しかし何十枚もプリントを出してくれるわけではありません。学校で配られる問題集の解説は簡素なものが多いです。それで、自分で何をしたら良いのか分からなくなってしまい、数学ができなくなってしまうのです。

例題のパターンごとに解き方を教えれば、直ぐ解けるようになってくれますが、それだけでは根本解決にはなりません。定期テストはしのげても、模試や入試では歯が立ちません。それじゃ不十分だという事を私は高校生の時に思い知らされています。浪人してから気が付かされました。

だから、そういう生徒たちに指導することだって同じです。

  • 途中の計算式をちゃんと書こう
  • 計算過程は消しゴムで消さず全て残しておこう
  • プリントや問題集だけで勉強しない(教科書を大切に)!

数学が得意な生徒は、ゆっくり計算するけど結果的に速い

高校生になっても数学が得意な生徒は、むしろ、ゆっくり取り組みます。取り組む問題集も限られています。その代わり、1つ1つ、自分の頭で考え、手を動かし、納得するまでじっくり取り組むのです。

中学生でも、数学で80点以上をコンスタントに取ってくる生徒は、やっていることが意外に多くありません。忙しい部活と勉強を両立してしまう生徒は、取り組む内容を絞ることができています。その代わり、細かいところの隅々まで納得いくまで、じっくり取り組んでいます。

ノートを見ると、途中の計算式や、考えに必要な数直線や表などが、ちゃんと書かれています。

それでは計算が遅いかというと、そんなことはありません。定理が良く身に着いているので、無駄な計算が少なく、ミスも少なく、消しゴムをほとんど使わないので、結果的に暗算が得意な生徒よりも早く終わります。これは学年が上がるほど、そうなります。

ですから数学を始める中1の段階で、できるだけ暗算を捨てる方が良いのです。

何度も書きますが、数学は数の性質が大切です。計算の根拠となる「数の性質」を正しく使わないと答えも間違えます。つまり論理が正しくないと答えが間違うようになっています。論理を確かめるには途中の式を書くしかありません。暗算はミスを生むリスクでしかありません。

「最終的な答えさえ合っていればいいや」

という短絡的な考え方では、あっという間に限界がきてしまいます。

競争相手は電卓ですか?

さて、ここであらためて問いたいのです。

人より速く計算できることが、そんなに大切な事ですか?

江戸時代は速く計算できる人が希少だったでしょう。昭和時代もそうだったかもしれません。でも今はどうでしょうか。電卓が100円ショップで買えたり、スマフォの電卓アプリが使えたりする時代です。人の手で計算するスピードに、それほど大きな価値はないと思います。

そしてコンピューターが安くなり、これから人工知能が身近になっていくことを考えれば、複雑な計算もコンピューターに任せればよくなるでしょう。

ですから、私たち人間のやることは、数の性質を良く知り、その性質を応用した命令をコンピューターに与えることです。電卓と競争するのではなく、コンピューターと会話できるような数学的な素養を養ってほしいと思います。

もちろん、数の性質や多様性を多く知っていて、その結果として計算が速くなるのは、積極的に良いことだと思います。教育的な意味として良いと思います。そしてコンピューターを使いこなせる、という意味でも良いことです。

まとめ

数の概念を狭い範囲に限定して「計算の速さを競う」ような価値観は、間違っていると思います。「暗算が速い方が優れている」と子供たちに思わせることは、むしろその後の数の広がりを邪魔してしまう危険性があるので要注意です。

子供たちを電卓と競争させてはいけません。算数から数学へステップアップできるように、

「途中の式をちゃんと書きましょう。」
「計算に使った数の性質を確認しましょう」

と、正しく子供たちに教えるべきだと思います。

 


名古屋市天白区の植田で塾を探すなら個別指導のヒーローズ!!

★ 直接のお問い合わせ ★
――――――――――――――――――――――
個別指導ヒーローズ 植田一本松校
〒468-0009
名古屋市天白区元植田1-202 金光ビル2F
TEL:052-893-9759
教室の様子(360度カメラ) http://urx.blue/HCgL

――――――――――――――――――――――

全国統一小学生テスト

全国統一小学生テスト写真

今日は全国統一小学生テストを実施しました。

ヒーローズ植田一本松校と赤池校の両方で、それぞれ実施しました。

塾の生徒も、そうでない生徒も、教室にたくさん集まって受験してくれました。

続きを読む